期刊文献+

二化螟piggyBac类转座子的克隆与分析 被引量:2

Molecular cloning and analysis of piggyBac-like transposon in Chilo suppressalis (Lepidoptera: Pyralidae)
下载PDF
导出
摘要 piggyBac转座子是DNA型转座子,广泛分布于生物体内。基于piggyBac转座子超家族成员IFP2开发的转基因工具载体是目前转基因研究中使用最广泛的载体之一,因此piggyBac转座子的研究受到广泛的关注和重视。本文是对二化螟Chilo suppressalis内源性piggyBac类转座子(piggyBac-like element,CsuPLE)的首次报道。克隆的CsuPLE(GenBank登录号:JX392388)全长2537bp,包含一个长1914bp的完整开放阅读框(open reading frame,ORF),编码含637个氨基酸残基的转座酶,转座酶中含有piggyBac家族保守的"DDD-domain"。CsuPLE全长序列具有完全对称的13bp反向末端重复序列(inverted terminal repeats,ITRs)以及非完全对称的21bp内部重复序列(internal repeats,IRs),在二化螟基因组上插入在特征性的"TTAA"靶位点重复(target site duplication,TSD)处。在我国地理跨度很大的不同二化螟种群中均存在结构完整的CsuPLE序列。本研究结果为深入研究piggyBac转座子的结构与功能的关系提供了新的素材,也为评价利用转座子载体系统在二化螟体内进行转基因操作的可行性和安全性提供了重要的理论基础。 piggyBac is a DNA transposon widespread in many organisms. IFP2 is the first piggyBac element found and has been developed as a gene vector most widely used in transgenesis of insects and mammals. Therefore, the study of piggyBac transposons in various organisms has attracted extensive interests and attention. CsuPLE, a novel member of piggyBac transposons, was cloned from Chilo suppressalis in this study with the GenBank accession no. JX392388. The sequence is 2 537 bp in length and contains a single open reading frame (ORF) of 1 914 bp encoding a transposase of 637 amino acids. Within the transposase, there is a conserved DDD-domain. The full-length sequence of CsuPLE contains a pair of perfectly symmetrical 13 bp inverted terminal repeats (ITRs) and a pair of non-completely symmetric 21 bp internal repeats (IRs). CsuPLE sequence is integrated in the "TTAA" target site duplication (TSD) of the genome. CsuPLE with similar structure was found in different geographic populations of C. suppressalis from China. This study not only provides insight into the relationship between structure and function of the piggyBac transposon but also sets up a theoretical basis for utilization of the CsuPLE transposon in transgenic research in C. suppressalis.
出处 《昆虫学报》 CAS CSCD 北大核心 2012年第7期763-771,共9页 Acta Entomologica Sinica
基金 国家水稻产业技术体系项目(Cars-001-25) 中国博士后科学基金项目(20110491367) 江苏省博士后基金项目(1101048C) 国家科技支撑计划项目(2012BAK11B03)
关键词 二化螟 PIGGYBAC 转座子 克隆 序列分析 Chilo suppressalis piggyBac transposon cloning sequence analysis
  • 相关文献

参考文献34

  • 1Atkinson PW, Warren WD, O'Brochta DA, 1993. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA, 90(20) : 9693 -9697.
  • 2Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, SanMiguel PJ, Bennetzen JL, 2009. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics, 5 (11) : e1000732.
  • 3Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta JM, 2001. Three Tntl subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 127( 1 ) : 212 -221.
  • 4Bohne A, Brunet F, Delphine GA, Sehuhheis C, Volff JN, 2008. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Research, 16( 1 ) : 203 - 215.
  • 5Bui QT, Delauriere L, Casse N, Nicolas V, Laulier M, Chenais B, 2007. Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene, 396 (2) : 248 - 256.
  • 6Charlesworth B, Sniegowski P, Stephan W, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371 : 215 -220.
  • 7Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T, 2005. Efficient transposition of the piggyBac ( PB ) transposon in mammalian cells and mice. Cell, 122:473 -483.
  • 8Feschotte C, Pritham E J, 2007. DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics, 41 : 331 - 368.
  • 9Finnegan D J, 1997. Transposable elements : how non-LTR retrotransposons do it. Current Biology, 7 : R245 - R248.
  • 10Fraser MJ, Smith GE, Summers MD, 1983. Acquisition of host cell DNA sequences by Baculoviruses: relationship between host DNA insertions and FP mutants of Autographa califomica and Galleria mellonella nuclear polyhedrosis viruses. Journal of Virology, 47 (2) : 287 -300.

二级参考文献2

共引文献5

同被引文献29

  • 1Arnheim N, Calabrese P, 2009. Understanding what determines the frequency and pattern of human germline mutatian. Nature Reviews Genetics, 10(7) : 478 -488.
  • 2Beguiristain T, Grandbastien MA, Puigdomcnech P, Casacuberta JM, 2001. Three Tntl subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology, 127:212 -221.
  • 3Bennetzen JL, 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends in Microbiology, 4 (9) : 347 - 353.
  • 4Bird AP, 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research, 8 : 1499 - 1504.
  • 5Bohne A, Brunet F, Galiana-Arnoux D, Schuhheis C, Volff JN, 2008. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Research, 16 : 203 - 215.
  • 6Brookfield JFY, 2005. The ecology of the genome-mobile DNA elements and their hosts. Nature Reviews Genetics, 6:128 -136.
  • 7Cam HP, Noma K, Ebina H, Levin HL, Grewal SI, 2008. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature, 451:431 -437.
  • 8Doolittle WF, Sapienza C, 1980. Selfish gene, the phenotype paradigm and genome evolution. Nature, 284:601 -603.
  • 9Dooner HK, Weil CF, 2007. Give-and-take: interactions between DNA transposons and their host plant genomes. Current Opinion in Genetics & Development, 17 : 486 - 492.
  • 10Feschotte C, Pritham E J, 2007. DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics, 41 : 331 - 368.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部