期刊文献+

基于数据集相关性聚类的渗透测试目标信息获取模型研究

Research of the Model of the Acquisition of the Target Information in the Penetration Test Based on Relativity Clustering Analysis of Dataset
下载PDF
导出
摘要 渗透测试中对目标进行侦察的目的是为了获取目标网络的IP地址、运行的操作系统以及应用程序列表。目前侦察主要通过一些单一的工具进行,这种方式侦察周期较长。结合目标信息内容,提出一种通过对数据集进行相关性聚类的方式来获取目标信息的模型,并设计了原型系统。实验结果表明,该模型优于相关工作,在较短的时间周期内获取了准确的目标信息。 The target must be scouted before the penetration test. The objective is to obtain the host IP address, the operation system as well as the list of application of the target. Recently, the methods of scout work used wildly depend on single tool. The period to do is so long. According to the content of the target information, a model of the acquisition of the target information in the penetration test based on relativity clustering analysis of dataset, and design the prototype is presented. The results show that the model is better than others, and get the target information quickly.
出处 《科学技术与工程》 北大核心 2012年第21期5187-5191,共5页 Science Technology and Engineering
关键词 网络渗透测试 数据分析 聚类 net work penetration test data analysis cluste
  • 相关文献

参考文献1

二级参考文献12

  • 1Campos R, Dias G, Nunes C. WISE: Hierarchical soft clustering of web page search results based on web content mining techniques[ A ]. Proceeding of the 2006 WIC/ACM International Conference on Web Intelligence[ C ]. Hong Kong, 2006.
  • 2Chuang SL,Chien LF. A practical web-based approach to generating Topic hierarchy for text segments [ A ]. Proceeding of CIKM' 04[ C]. Washington D. C., USA,2004. 127 - 136.
  • 3Osinski S, Weiss D. Conceptual clustering using lingo algorithm:Evaluation on open directory project data[ A]. IIPWM04 [ C]. Sapporo, Japan, 2004.81 - 88.
  • 4Giannotti F, Nanni M, Pedreschi D. Webcat: Automatic catego- rization of web search results[ A]. SEBD03 [ C ]. Cetraro, Italy. 71 - 82.
  • 5Salton G. The SMART Retrieval Systems[ M]. Prentice Hall, Englewood Cliffs,N. J, 1971.
  • 6Geraci F, Pellegrini M, Maggini M, Sebastiani F. Cluster generation and cluster labeling for web snippets [ A ]. SPIRE 2006, LNCS[ C]. Glasgow, UK,2006.25 - 36.
  • 7Hiroyuki Toda, Ryoji Kataoka. A search result clustering method using informatively named entities[A]. Proceedings of the ACM Workshop on Web Information [ C ]. Louisiana, USA,2005.81 - 86.
  • 8Hearst M A, Pedersen J O. Reexamining the cluster hypothesis: Scatter/gather on retrieval results[ A ]. Proceedings of the ACM Special Interest Group on Information Retrieval Conference [C]. 1996.76- 84.
  • 9F Giannotti, M Nanni, D Pedreschi. Webcat: Automatic categorization of web search results[A]. Proceedings of the Eleventh Italian Symposium on Advanced Database Systems[ C]. Italia, 2003. 507 - 518.
  • 10Franzen K, Karlgren J. Verbosity and interface design [ A]. Technical Report T2000: 04[ C]. Swedish Institute of Computer Science,2000.61 - 69.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部