期刊文献+

Modeling and dynamics analysis of the fractional-order Buck-Boost converter in continuous conduction mode 被引量:4

Modeling and dynamics analysis of the fractional-order Buck-Boost converter in continuous conduction mode
下载PDF
导出
摘要 In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos. In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期78-84,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 51177117) the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
关键词 fractional-order Buck-Boost converter MODELING BIFURCATION numerical simulation fractional-order Buck-Boost converter, modeling, bifurcation, numerical simulation
  • 相关文献

参考文献21

  • 1Nigmatullin R R, Arbuzov A A, Salehli F, Giz A, Bayrak I and Catalgil G L 2007 Physica B 388 418.
  • 2Westerlund S 1994 IEEE Transactions on Dielectrics and Electrical Insulation 1 826.
  • 3Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. B 20 060505.
  • 4Westerlund S 2002 Dead Matter Has Memory/ (Kalmar, Sweden: Causal Consulting) Chap. 7.
  • 5Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) Chap. 2.
  • 6Nakagava M and Sorimachi K 1992 IEICE Trans. Fun- dam. E75-A 1814.
  • 7Jonscher A K 1983 Dielectric Relaxation in Solids (Lon- don: Chelsea Dielectric Press) Chap. 3.
  • 8Petras I 2008 Chaos, Solitons and Fractals 38 140.
  • 9Cisse Haba T, Ablart G, Camps T and Olivie F 2005 Chaos, Solitons and Fractals 24 479.
  • 10Cisse Haba T, Loum G L and Ablart G 2007 Chaos, Soli- tons and Fractals 33 364.

同被引文献28

  • 1DEANE J H B. Chaos in a Current-Mode Controlled Boost dc-dc Converter [J]. IEEE Transactions on Circuits and Sys-tems. I: Fundamental Theory and Applications,1992,39(8) : 680 - 683.
  • 2CHAN W C Y,TSE C K. Study of Bifurcations in Current-Programmed DC/DC Boost Converters: from Quasiperiodicityto Period-Doubling [J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 1997,44(12): 1129 - 1142.
  • 3HAMILL D C, DEANE J H B,JEFFERIES D J. Modeling of Chaotic DC-DC Converters by Iterated Nonlinear Map-pings [J]. IEEE Transactions on Power Electronics, 1992,7(1) : 25 - 36.
  • 4DONGALE T D. Simulative Study of Nonlinear Dynamics in Single Stage Boost Converter [J]. International Journal,2013,2(3): 59-66.
  • 5NATSHEH A N,KETTLEBOROUGH J G,NAZZAL J M. Analysis, Simulation and Experimental Study of ChaoticBehaviour in Parallel-Connected DC-DC Boost Converters [J]. Chaos, Solitons &. Fractals, 2009,39(5) : 2465 - 2476.
  • 6BERNARDO M D,VASCA F. Discrete-Time Maps for the Analysis of Bifurcations and Chaos in DC/DC Converters [J].Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 2000,47(2) : 130 - 143.
  • 7NATSHEH A N, KETTLEBOROUGH J G,J ANSON N B. Experimental Study of Controlling Chaos in a DC-DC BoostConverter [J]. Chaos,Solitons &- Fractals, 2009, 40(5) : 2500 - 2508.
  • 8BANERJEE S,CHAKRABARTY K. Nonlinear Modeling and Bifurcations in the Boost Converter [J]. Power Electron-ics, IEEE Transactions on, 1998,13(2) : 252 - 260.
  • 9CAFAGNA D,GRASSI G. Experimental Study of Dynamic Behaviors and Routes to Chaos in DC-DC Boost Converters[J]. Chaos, Solitons Fractals,2005, 25(2) : 499 - 507.
  • 10王发强,马西奎.电感电流连续模式下Boost变换器的分数阶建模与仿真分析[J].物理学报,2011,60(7):89-96. 被引量:33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部