摘要
A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.
A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.
基金
Project supported by the National Natural Science Foundations of China (Grant Nos. 20673050 and 20973089)