摘要
The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (C1) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voJtage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.
The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (C1) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voJtage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.
基金
Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.KLOF.2010003)
the National Basis Research Foundation of China (Grant No. 51320)