期刊文献+

生物酶法催化瓦伦西亚烯生成圆柚酮 被引量:1

Production of(+)-Nootkatone from(+)-Valencene by Biocatalysis
下载PDF
导出
摘要 在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol(nmol P450)-1min-1,但催化产物中没有检测到圆柚酮的生成。突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol(nmol P450)-1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%。与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%。 Wild-type CYP450BM.3 showed NADPH oxidation rate of 31 + 1.0 nmol ( nmol P450 ) -'min-I in vitro, however, ( + ) -nootkatone could not be detected in the products. The R47L/YS1F/F87A mutant had higher activity of 79 + 6.5 nmol ( nmo117450 ) -Imin-l. However, it was much less selective and ( + ) -nootkatone constituted 6.8% of the total products. Meanwhile, another mutant A74G/F87V/L188Q was found to have similar NADPH oxidation activity with the R47IEY51F/F87A mutant but a higher ( + ) -nootkatone ratio of 8.0% was generated.
出处 《生物技术通报》 CAS CSCD 北大核心 2012年第8期194-198,共5页 Biotechnology Bulletin
基金 国家自然科学基金项目(81001475) 杭州市科技发展计划项目(20101131N05) 国家重大科技专项子课题(2008ZX07101-006-05-KLNSPC2010A02)
关键词 圆柚酮 瓦伦西亚烯 细胞色素 P450BM-3突变体 生物催化 ( + ) -Nootkatone ( + ) -Valencene Cytoehrome P450SM_3 Mutant Biocatalysis
  • 相关文献

参考文献17

  • 1Krtigener S, Krings U, Zorn H, et al. A dioxygenase of Pleurotus sapi- dus transforms ( + ) -valencene gio-specifically to ( + ) -nootkatone via a stereo-specific allylic hydroperoxidation. Biosource Techno- logy, 2010, 101 ( 2 ) : 457-462.
  • 2Girhard M, Machida K, hoh M, et al. Regioselective biooxidation of (+) -valencene by recombinant E. coli expressing CYPIO9B1 from Bacillus subtilis in a two-liquid-phase system. Microbial Cell Factories, 2009, 8 ( 1 ) : 3647.
  • 3Fraatz MA, Berger RG, Zorn H. Nootkatone-a biotechnological challenge. Applied Microbiology and Biotechnology, 2009, 83 ( 1 ) : 35-41.
  • 4Narhi LO, Fulco AJ. Characterization of a catalytically self-sufficient 119, 000-dahon cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. Journal of Biological Chemistry, 1986, 261 ( 16 ) : 7160-7169.
  • 5Seifert A, Vomund S, Grohmann K, et al. Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio, stereo-and chemoselectivity. Chembiochem, 2009, 10 ( 5 ) : 853- 861.
  • 6Glieder A, Farinas ET, Arnold FH. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotechno- logy, 2002, 20 ( 11 ) : 1135-1139.
  • 7Lewis JC, Bastian S, Bennett CS, et al. Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450BM-3 demethy- lases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 ( 39 ) : 16550-16555.
  • 8Fasan R, Chen MM, Crook NC, et al. Engineered alkane-hydroxylating cytochrome P450BM-3 exhibiting nativelike catalytic properties. An- gewandte Chemie, 2007, 46 ( 44 ) : 8414-8418.
  • 9Chowdhary PK, Stewart L, Lopez C, et al. A single mutation in P450- BM-3 enhances acyl homoserine lactone : Acyl homoserine substrate binding selectivity nearly 250-fold. Journal of Biotechnology, 2008, 135 ( 4 ) : 374-376.
  • 10Chen HC, Swenson RP. Effect of the insertion of a glycine residue into the loop spanning residues 536-541 on the semiquinone state and redox properties of the flavin mononucleotide-binding domain of flavocytochrome P450BM-3 from Bacillus megaterium. Biochemistry, 2008, 47 ( 52 ) : 13788-13799.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部