期刊文献+

基于频率域的图像显著性区域提取方法

Based on the Frequency Domain Image Salient Region Extraction Method
下载PDF
导出
摘要 针对图像的显著性区域提取方法存在区域边界不明确、分辨率不高、显著性目标不准确等问题,提出了一种使用高斯差分滤波器的组合来保持原图像更多的频率信息,然后在频率域里利用颜色和亮度两个特征来计算显著图,最后用均值偏移方法结合自适应阈值方法从显著图中提取显著性区域。实验结果表明,使用高斯滤波器的方法不仅输出完整分辨率的显著图,而且能准确地突出显著性目标,使区域具有明确的边界,并且分割的查准率和查全率都好于多尺度分析方法和Itti方法。 An image salient region extraction method based on the frequency domain was proposed. This method used a combination of DoG filters to retain more frequency contents from the original images, and used color and brightness information to estimate the salient region. We used the mean shift method combined with adaptive thresh- old method from the saliency map extract salient region at last. The experimental results show that this method not on- ly outputs full -resolution salient map, but also solves the consistently highlight salient region, high resolution and gives well - defined boundaries of salient objects. The method performed that on the segmentation task by achieving both higher precision and better recall than multiscale analysis method and Itti's method.
出处 《计算机仿真》 CSCD 北大核心 2012年第8期238-241,249,共5页 Computer Simulation
关键词 显著图 频率域 多尺度分析 图像分割 查全率 Saliency map Frequency domain Muhiscale analysis Image segmentation Recall
  • 相关文献

参考文献9

  • 1L Itti, C Koch and E Niebur. A model of saliency - based visual attention for rapid scene analysis [ J 1. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1998,20 ( 11 ): 1254 - 1259.
  • 2夏召强,冯晓毅,彭进业.基于边缘与深度特征的感兴趣区域检测技术[J].计算机仿真,2009,26(7):248-251. 被引量:8
  • 3王国营,梁春迎.一种图像显著区域的提取方法[J].计算机应用,2010,30(6):1619-1621. 被引量:13
  • 4D Marr. Vision: a computational investigation into the human rep- resentation and processing of visual information [ M ]. W.H. Free- man, San Francisco, 1982.
  • 5D G Lowe. Distinctive image features from scale - invariant feature points[J]. International Journal of Computer Vision, 2004,60:91 - 110.
  • 6J Hard, C Koch and P Perona. Graph -based visual saliency[ J]. Advances in Neural Information Processing Systems, 2007,19:545 - 552.
  • 7S Alpert, M Galun, R Basri, A Brandt. Image Segmentation by Probabilistic Bottom - Up Aggregation and Cue Integration [ C ]. IEEE International Conference on Computer Vision and pattern Recognition, 2007 : 1 - 8.
  • 8J L Crowley, O Rift and J H Piater. Fast computation of character- istic scale using a half octave pyramid [ C ]. International Confer- ence on Scale - Space theories in Computer Vision, 2003.
  • 9T Liu, J Sun, N N Zheng, X Tang and H Y Shum. Learning to detect a salient object[ C ]. IEEE Conference on Computer Vision and Pattern Recognition, 2007.

二级参考文献9

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2张鹏,王润生.静态图像中的感兴趣区域检测技术[J].中国图象图形学报(A辑),2005,10(2):142-148. 被引量:32
  • 3ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 4RAN J,NGAN K,LI M,et al.Unsupervised extraction of visual attention objects in color images[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,16(1):141-145.
  • 5KO B C,NAM J Y.Object-of-interest image segmentation based on human attention and semantic region clustering[J].Journal of Optical Society of America A,2006,23(10):2462-2470.
  • 6MA Y F,ZHANG H J.Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the Eleventh ACM International Conference on Multimedia.New York:ACM Press,2003:374-381.
  • 7OHASHI T,AGHBARI Z,MAKINOUCHI A.Hill-climbing algorithm for efficient color-based image segmentation[C]//SPPRA2003:LASTED International Conference on Signal Processing,Pattern Recognition,and Applications.Rhodes,Greece:[s.n.],2003.
  • 8ITTI L.iLab neuromorphic Vision C++toolkit[EB/OL].[2009-11-10].http://ilab.usc.edu/toolkit/.
  • 9张菁,沈兰荪,高静静.基于视觉注意模型和进化规划的感兴趣区检测方法[J].电子与信息学报,2009,31(7):1646-1652. 被引量:24

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部