期刊文献+

改进的神经网络在变压器故障诊断中的应用 被引量:7

Application of Improved Neural Network in Transformer Fault Diagnosis
下载PDF
导出
摘要 研究变压器故障准确诊断问题。通过对变压器油中溶解气体定性、定量地分析可及时发现变压器内部存在的潜伏性故障。但目前神经网络诊断方法存在收敛速度慢、不稳定问题,导致正确率低。为解决上述问题,提出了小生境遗传算法改进的神经网络模型。充分利用小生境遗传算法的搜索能力和神经网络的非线性映射和学习联想能力,用小生境遗传算法优化神经网络的初始权值和阈值,并对网络进行训练和测试。实验结果表明,与传统方法相比,改进模型有效提高了网络收敛速度、稳定性,提高了故障诊断正确率,具有很强的可行性和有效性。 Research the problem of transformer fault diagnosis. The latent fauhs in transformer can be found timely through the qualitative and quantitative analysis of the gas dissolved in transformer oil. But the problems of slow convergence speed and instability exist in the diagnosis method based on neural network at present, which leads to low accuracy rate. In order to solve the problems, an improved neural network model of niche genetic algorithm was presented. It makes good use of searching ability of niche genetic algorithm and the nonlinear reflection and associa- tion learning ability of the neural network, and optimizes the initial connection weights and thresholds of the neural network through the niche genetic algorithm, then trains and tests the network. The result of the experiment shows that, compared with the traditional method, the improved model is effective to improve convergence rate, stability of network and accuracy of fault diagnosis, and has very strong feasibility and validity.
作者 陈小玉
出处 《计算机仿真》 CSCD 北大核心 2012年第8期318-321,335,共5页 Computer Simulation
关键词 故障诊断 神经网络 小生境遗传算法 反向传播算法 Fanh diagnosis Neural network Niche genetic algorithms Back propagation algorithm
  • 相关文献

参考文献7

二级参考文献17

  • 1穆成坡,黄厚宽,田盛丰.入侵检测系统报警信息聚合与关联技术研究综述[J].计算机研究与发展,2006,43(1):1-8. 被引量:70
  • 2杨智君,田地,马骏骁,隋欣,周斌.入侵检测技术研究综述[J].计算机工程与设计,2006,27(12):2119-2123. 被引量:45
  • 3康钦建,李荣,周激流.引入进化梯度的改进小生境遗传算法[J].计算机应用,2006,26(11):2651-2653. 被引量:4
  • 4周荃,王崇骏,王珺,周新民,陈世福.基于人工智能技术的网络入侵检测的若干方法[J].计算机应用研究,2007,24(5):144-149. 被引量:33
  • 5K J Astrom, T Hagglund. The future of PID control[ J ]. Control Engineering Practice, 2001, (9) : 1163 - 1175.
  • 6P Cominos, N Nunro. PID controller recent tuning methods and design to specification[ C]. IEEE proceeding of Control Theory and Applications, 2002,149( 1 ) : 46 -53.
  • 7D P Kwok, F Sheng. Genetic algorithm and simulated annealing for optimal robot arm PID control[ C ]. Proceedings of the I st IEEE Conference on Evolutionary Computation. Orlando, FL, 1994:707 -713.
  • 8Holladn J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor, USA: The University of Michigan Press, 1975.
  • 9Rudolph G. Convergence Properties of Canonical Genetic Algorithms[J]. IEEE Trans. on Neural Networks, 1994, 5(1): 96-101.
  • 10Cavicchio D J. Reproductive Adaptive Search Using Simulated Evolution[D]. Ann Arbor, USA: University of Michigan, 1970.

共引文献42

同被引文献126

引证文献7

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部