摘要
A new version of the generalized density-dependent cluster model (GDDCM) is developed to describe an α particle tunneling through a deformed potential barrier. The microscopic deformed potential is numerically constructed in the double-folding model using the multipole ex- pansion method. The decay width of an α-cluster state is evaluated using the integral of the quasi-bound state wave function, the scattering state wave function, and the difference of poten- tials. We perform a systematic calculation of α-decay half-lives for favored transitions in even-even nuclei ranging from Z=52 to Z=104. The calculated half-lives are in good agreement with the experimental values. The relation between nuclear deformations and α-decay half-lives is also discussed in details.
A new version of the generalized density-dependent cluster model (GDDCM) is developed to describe an α particle tunneling through a deformed potential barrier. The microscopic deformed potential is numerically constructed in the double-folding model using the multipole ex- pansion method. The decay width of an α-cluster state is evaluated using the integral of the quasi-bound state wave function, the scattering state wave function, and the difference of poten- tials. We perform a systematic calculation of α-decay half-lives for favored transitions in even-even nuclei ranging from Z=52 to Z=104. The calculated half-lives are in good agreement with the experimental values. The relation between nuclear deformations and α-decay half-lives is also discussed in details.
基金
supported by National Natural Science Foundation of China(Nos.10535010,10675090,10775068,10735010,10975072,11035001)
973 National Major State Basic Research and Development of China(Nos.2007CB815004,2010CB327803)
CAS Knowledge Innovation Project(No.KJCX2-SW-N02)
Research Fund of Doctoral Point(RFDP) of China(Nos.20070284016,20100091110028)