期刊文献+

阳离子Fe位掺杂对LiFePO_4正极材料电化学性能的影响 被引量:2

The Effect of Different Cations Doped in Fe Site on Electrochemical Performances of LiFePO_4 Cathode Material
下载PDF
导出
摘要 以蔗糖为碳源,采用高温固相法制备了Fe位掺杂不同阳离子(Al 3+,Ni 2+和Mn2+)的LiFe0.97M0.03PO4/C(M=Al,Ni,Mn)锂离子电池正极材料.用X-射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试和电化学阻抗谱(EIS)等研究了不同阳离子Fe位掺杂(Al 3+,Ni 2+和Mn2+)对LiFePO4的结构、形貌和电化学性能的影响.结果表明:阳离子Fe位掺杂没有改变LiFePO4的晶体结构,但是减小了LiFePO4材料的粒径,最终改善了LiFePO4的电化学性能.特别是LiFe0.97Mn0.03PO4/C材料具有更好的电化学性能,在0.1C和1C下放电,LiFe0.97Mn0.03PO4/C材料的首次放电比容量分别为162mAhg-1和140mAhg-1,且1C充放电倍率下循环50次后容量保持率仍然为98%. LiFe0.97M0.03PO4/C(M=Al,Ni,Mn) cathode materials were synthesized by high temperature solid state reaction with sucrose as carbon source. The effect of the different cations doped in Fe site on the structure, morphology and electrochemical performance of LiFePO4 was studied by X-ray diffraction (XRD), scanning electron microscope (SEM), galvanostatic charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results show that cation doped in Fe site did not alter the crystal structure of LiFePO4, but decreased the particle size of the materials, and finally enhance the electrochemical performance of LiFePO4. Especially, the LiFe0.97 Mn0.03 PO4/C showed the best electrochemical performance. The initial discharge capacities of LiFe0.97 Mn0.03 PO4/C at 0. 1 C and 1 C were 162 mAhg-1 and 140 mAhg-1 , and with a capacity retention up to 98% after 50 cycles at 1 C.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2012年第2期61-65,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(20871101) 科技部科技计划项目(2009GJD20021) 湖南省高校产业化培育项目(10CY005)
关键词 锂离子电池 LIFEPO4正极材料 Fe位阳离子掺杂 电化学性能 lithium ion battery cathode material cation doped in Fe site electrochemical performance
  • 相关文献

参考文献21

  • 1王先友,易四勇,肖琼.大容量锰酸锂动力电池的研制[J].湘潭大学自然科学学报,2009,31(2):99-103. 被引量:5
  • 2王先友,魏思伟,舒洪波,吴强,杨秀康,杨顺毅,肖琼.矿山机车用中等功率型锂离子电池制备技术[J].湘潭大学自然科学学报,2011,33(1):53-58. 被引量:7
  • 3PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for reehargeable lithium batteries[J].Journal of the Electrochemical Society, 1997, 144(4) : 1 188- 1 194.
  • 4PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J].Solid state I- onics, 2002, 148(1/2): 45-51.
  • 5CHUNG H T , JANG S K, RYU H W, et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C eom- posite[J].Solid State Communications, 2004,131(8) : 549- 554.
  • 6JANG I C ,L1M H H , LEE S B , et al. Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery per- formance[J].Journal of Alloys and Compounds, 2010, 497 : 321- 324.
  • 7PAN M, ZHOU Z. Carbon rich surface of LiFePO4 grain enhancing its rate capability[J].Nature Materials, 2011, 65:1 131- 1 133.
  • 8HSU K F, TSAY S Y, HWANG B J. Physical and electrochemical properties of LiFePOJcarbon composite synthesized at various pyrolysis periods[J]. Journal of Power Sources, 2005, 146(1-2) : 529-533.
  • 9CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage eleetrodes[J]. Nature Materials, 2002, 1(2): 123-128.
  • 10LI C F, HUA N, WANG C Y, et al. Effect of Mn^2+-doping in LiFePO4 and the low temperature electrochemical performance [J].Journal of Alloys and Compounds, 2010, 5(509): 1 897-1 900.

二级参考文献50

共引文献48

同被引文献23

  • 1TARASON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J], Nature,2001:359.
  • 2PROSINI P P, CENTO C, RUFOLONIC A, RONDINO F,et al. A lithium-ion battery based on LiFePO4 and silicon nanowires [J]. Solid State Ionics,2015 ,269:93-97.
  • 3THACKERAY M M,WOVERTON C,ISAACS E D. Electrical energy storage for transportation-approaching the limits of,and going beyond, lithium-ion batteries [J],Energy Environ Sci,2012(5):7854-7863.
  • 4SULAIMAN M A, HASAN H. Development of lithium-ion battery as energy storage for mobile power sources applications[J]. AIP Conf Proc,2009 ,1169:38-47.
  • 5GOODENOUGH J B,KIM Y. Challenges for rechargeable lithium batteries[J]. Chem Mater,2010,22(3):587-603.
  • 6ETACHERI V,MAROM R5ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ Sci,2011 ,4(9):3243-3262.
  • 7SUNG W,SHIN C B. Electrochemical model of a lithium-ion battery implemented into an automotive battery management system [J]. Computers and Chemical Engineering,2015,76:87-97.
  • 8PARVINI Y,VAHIDI A. Maximizing charging efficiency of lithium-ion and lead-acid batteries using optimal control theory [J]. American Control Conference (ACC),2015 ,7:317-322.
  • 9ARMAND M,TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657.
  • 10WU ,WANG Z,SU Y F,et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2- MoO3 comosite cathodes with low irreversible capacity loss for lithium ion batteries [J]. Journal of Power Sources,2014,247:20-25.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部