期刊文献+

云环境下的烟草移动互联应用与研究 被引量:1

Tobacco Mobile Internet Application and Research in Cloud Environment
下载PDF
导出
摘要 当今社会,网络数据量飞速增长且规模日渐庞大,不管是企业还是个人都面临着如何处理这些海量数据。传统的数据处理方法存在着数据存储成本过高,海量数据管理较困难、可靠性较低、效率低下、并行处理程序编写困难等诸多缺点。在分析了传统数据处理的诸多优缺点后,提出了构建企业"私有云"的思想,为烟草行业的发展提供了一个新的方向。 Traditional methods for processing massive data have many shortcomings,such as,higher cost of data storage,more difficult data management,less reliable,lower efficiency,more difficult parallel programming,and so on.In this paper,base on many of the advantages and disadvantages of the traditional data procession,the idea of building enterprise private cloud,a new direction for the development of the tobacco industry.
出处 《工业控制计算机》 2012年第7期59-60,共2页 Industrial Control Computer
基金 基于B2B商务运营环境的商务智能平台研制重大科技专项重点工业项目(2011C11040)
关键词 私有云 云计算 烟草 海量数据 private cloud,cloud computing,tobacco,massive data
  • 相关文献

参考文献6

二级参考文献10

  • 11,Braachman R, Anand T. Data Archeology. KDD-93,1993.
  • 22,Jaturon Chaattratichat, John Darlington, Moustafa Ghanem. Large Scale Data Mining: The Challenges and Solutions. KDD-97,1997.
  • 33,Gregory Piatetsky Shapiro, Frawley William J. Knowledge Discovery in Databases. AAAI Press, Menlo Park, CA, 1991.
  • 44,Marcel Holsheimer, Arno Siebes. Data Mining: The Search for Knowledge in Databases. Report CS-R9406, CWI,1994.
  • 55,Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Data Mining: A Performance Perspective. IEEE Trans. on Knowledge and Data Engineering, 1993,5(6): 914~925.
  • 66,Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int′1 Conference on Very Large Databases, Santiago, Chile, 1994.
  • 77,Brachman R J. Integrated Support for Data Archeology. In AIII-93 Workshop on Knowledge Discovery in Database, 1993.
  • 8http://www.google.com/intl/en/options/ .
  • 9William F.Slater Ⅲ.The Next Big Paradigm:Computing in the Cloud[]..2008
  • 10http://www.china-cloud.com/cloudcomputing.jsp?ID=408 .

共引文献35

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部