期刊文献+

基于H.264压缩域的运动对象快速分割方法 被引量:2

A Fast Moving Object Extraction Method based on H.264 Compressed Video
下载PDF
导出
摘要 针对H.264压缩域的运动对象分割问题,提出了一种基于Fisher准则的运动对象分割方法。首先将运动对象中每个宏块中子块的运动矢量进行加权,获取每个宏块的运动矢量,然后利用多帧的运动矢量进行累加,获取整个宏块的运动矢量,最后使用Fisher准则将运动对象的矢量分类,从而获取H.264压缩域中的运动对象。通过实验证明,在基本满足运动对象分割准确率的前提下,达到了较好的实时性。 For the purpose of extracting moving object from H 264 compressed video, a extracting moving method based on Fisher criterion is presented. Firstly ,the paper retrives the moving vectors(MV) of sub block in the Macro Block(MB) which was 16×16 pixels in P frame, and the moving vector of each sub block is weighted in each MB. The each moving vector of the same MB is also weighted in the in- ter flames. Finally,the weighted moving vector of each MB is retrived from the P flame and is judged by the Fisher criterion. The experimental results show that the proposed approach can quickly extract moving object from H.264 compressed video,which guarantees extracting quality
出处 《智能计算机与应用》 2012年第4期14-16,21,共4页 Intelligent Computer and Applications
基金 黑龙江省自然科学基金项目(2011年度 编号:F201103)
关键词 FISHER准则 H.264 运动矢量 Fisher Criterion H.264 Compressed Video Molion Vector Field
  • 相关文献

参考文献10

  • 1ZENG W,DU J,GAO W. Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model[J].Real-Time Imaging,2005,(04):290-299.doi:10.1016/j.rti.2005.04.008.
  • 2LIU Z,ZHANG Z Y,SHEN L Q. Moving object segmentation in the H.264 compressed domain[J].Optical Engineering,2007,(01):017003-1-017003-5.
  • 3LU Y,ZHANG Z Y,LIU Z. Efficient motion segmentation for H[M].264 compressed video[C]∥Proceedings of the SPIEThe International Society for Optical Engineering MIPPR:Automatic Target Recognition and Image Analysis and Multispectral Image Acquisition,2007.678638-1-678638-8.
  • 4YOU W S,HOUARI S M,KIM M. Moving object tracking in H.264/AVC bitstream[J].Multimedia Content Analysis and Mining,2007.483-492.
  • 5CHEN Lifen,LIAO Hongyuan,CHEN Linja. A new LDA based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,(10):171-3-1726.
  • 6POPPE C,BRUYNE S D,PARIDAENS T. Moving object detection in the H.264/AVC compressed domain for video surveillance applications[J].Journal of Visual Communication and Image Representation,2009,(06):428-437.
  • 7边肇祺;张学工.模式识别[M]北京:清华大学出版社,1999176-177.
  • 8杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 9王志良;孟秀艳.人脸工程学[M]北京:机械工业出版社,2008114-119.
  • 10NOCK R,NIELSEN F. Sem-i supervised statistical region refinement for color image segmentation[J].Pattern Recognition,2005,(06):835-846.doi:10.1016/j.patcog.2004.11.009.

二级参考文献18

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献96

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部