摘要
应用具有量子行为的粒子群优化算法,对支持向量(SVM)进行参数优化研究.根据支持向量机的分类准确率和泛化能力之间的关系,应用QPSO算法选取比较优秀的参数模型,比较参数模型的各项性能,选取最适合实际需要的参数模型.仿真表明,QPSO算法的SVM模型与PSO算法相比在分类准确率和泛化能力上均获得更好的效果,经QPSO优化后的SVM整体性能明显提高.
Quantum-behaved Particle Swarm Optimization (QPSO) is utilized to research parame- ter optimization of Support Vector Machine (SVM). According to the relationship between classi- fication accuracy and generalization of SVM,better parameter models are chosen to compare their performances in order to obtain the parameter model which is the most suitable to the actual re- quirement. Simulation shows that QPSO can obtain the better parameter model in classification accuracy and generalization and the over-all performance of SVM has a great improvement after it has been optimized by QPSO.
出处
《军械工程学院学报》
2012年第3期46-49,共4页
Journal of Ordnance Engineering College
关键词
量子粒子群优化
支持向量机
参数优化
粒子群优化
Quantum-behaved Particle Swarm Optimization (QPSO)
Support Vector Machine (SVM)
parameter optimization
Particle Swarm Optimization (PSO)