期刊文献+

基于QPSO算法的支持向量机参数优化研究

Research on Support Vector Machine with Optimized Parameters Based on Quantum-behaved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 应用具有量子行为的粒子群优化算法,对支持向量(SVM)进行参数优化研究.根据支持向量机的分类准确率和泛化能力之间的关系,应用QPSO算法选取比较优秀的参数模型,比较参数模型的各项性能,选取最适合实际需要的参数模型.仿真表明,QPSO算法的SVM模型与PSO算法相比在分类准确率和泛化能力上均获得更好的效果,经QPSO优化后的SVM整体性能明显提高. Quantum-behaved Particle Swarm Optimization (QPSO) is utilized to research parame- ter optimization of Support Vector Machine (SVM). According to the relationship between classi- fication accuracy and generalization of SVM,better parameter models are chosen to compare their performances in order to obtain the parameter model which is the most suitable to the actual re- quirement. Simulation shows that QPSO can obtain the better parameter model in classification accuracy and generalization and the over-all performance of SVM has a great improvement after it has been optimized by QPSO.
出处 《军械工程学院学报》 2012年第3期46-49,共4页 Journal of Ordnance Engineering College
关键词 量子粒子群优化 支持向量机 参数优化 粒子群优化 Quantum-behaved Particle Swarm Optimization (QPSO) Support Vector Machine (SVM) parameter optimization Particle Swarm Optimization (PSO)
  • 相关文献

参考文献7

  • 1VAPNIK V. The nature of statistical learning theory[M].New York:springer-verlag,1995.
  • 2VAPNIK V. Statistical learning theory[M].Beilin:Springer-Verlag,1981.
  • 3SUN Jun,XU Wenbo,FENG Bin. A global search strategy of quantum-behaved particle swarm optimization[A].Singapore:IEEE,2004.111-116.
  • 4KENNED J,EBERHART R C. Particle swarm optimization[A].Perth,WA:IEEE,1995.1942-1948.
  • 5EBERHART R C,SHI Yuhui. Comparing inertia weights and constriction factors in particle swarm optimization[A].San Diego:IEEE,2000.84-88.
  • 6SHI Yuhui,EBERHART R C. A modified particle swarm optimizer[A].Anchorage,AK,USA:IEEE,1998.69-73.
  • 7SUN Jun,FENG Bin,XU Wenbo. Particle swarm optimization with particles having quantum behavior[A].Portland:IEEE,2004.325-331.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部