期刊文献+

基于PCA的参数化间隔双子支持向量机及其在手写体识别上的应用 被引量:2

PCA Based on Parametric-Margin Twin Support Vector Machines and Its Application on Handwriting Recognition
下载PDF
导出
摘要 改进了基于参数化间隔的双子支持向量机算法的预处理过程,在数据预处理阶段使用了主成分分析法对数据进行降维,提出了基于主成分分析的参数化间隔双子支持向量机,从而加快了整个算法的训练速度.公共数据库上的实验结果显示了该算法的优秀分类能力,对高维数据集的降维效果也比较成功.最后,将这种算法应用到手写体数字识别技术上,实验结果显示出该算法较好的分类性能. The pretreatment process of twin support vector machine based on Parametric-margin has been improved, principal component analysis to reduce the dimensionality of the data is used in the data preprocessing stage. The twin support vector machines based on principal component analysis speeds up the training process. Experiments on public available datasets show excellent classification ability. Dimensionality reduction of the high-dimensional dataset is also more successful. Finally, this algorithm is applied on handwritten numeral recognition. The experimental results show the effective of our algorithm.
出处 《北华大学学报(自然科学版)》 CAS 2012年第2期229-235,共7页 Journal of Beihua University(Natural Science)
关键词 双子支持向量机 参数化间隔 主成分分析 手写体数字识别 twin support vector machine parametric-margin principal component analysis handwritten digitrecognition
  • 相关文献

参考文献14

  • 1Cortes C, Vapnik V N. Support Vector Networks [ J ]. Machine Learning, 1995,20:273-297.
  • 2Bi J B, Vapnik V N. Learning with Rigorous Support Vector Machines [ A ]. Learning with Rigorous Support Vector Machines [ C ]//Springer, Berlin : Heidelberg, 2003 : 243-257.
  • 3Scholkopf B ,Alexander J S, Alexander J S. Advances in Kernel Methods-Support Vector Learning [ M ]. Cambridge, MA: MIT Press, 1998.
  • 4Taku K, Yuji M. Chunking with Support Vector Machines [ A ]. Second Meeting of the North American Chapter of the Association for Computational Linguistics on Language Technologies [ C ]//Cambridge, MA : MIT Press,2001 : 1-8.
  • 5Mangasarian O L, Musicant D R. Successive Overrelaxation for Support Vector Machines [ J]. IEEE Transactions on Neural Networks, 1999,10 (5) : 1032-1037.
  • 6Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in Kernel Methods-support Vector Learning[ M ]. Cambridge, MA : MIT Press, 1999 : 185-208.
  • 7Jayadeva, Khemchandani R, Chandra S. Twin Support Vector Machines for Pattern Classification [ J ]. IEEE Trans Pattern Anal Machine Intell, 2007,29 (5) : 905-910.
  • 8Shao Y H, Zhang C H, Wang X B, et al. Improvements on Twin Support Vector Machines [ J ]. IEEE Transactions on Neural Networks ,2011,22 (6) :962-968.
  • 9Shao Y H, Deng NY. A Coordinate Descent Margin Based-twin Support Vector Machine for Classification [ Z ]. Neural Networks ,2011, doi : 10. 1016/j. neunet. 2011.08. 003.
  • 10Peng X J. TPMSVM: A Novel Twin Parametric-margin Support Vector Machine for Pattern Recognition [ J ]. Pattern Recognition ,2011,44 ( 10-11 ) :2678-2692.

同被引文献38

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部