期刊文献+

机载航电系统中多源信息模糊自适应融合技术

Self-adaptive fusion technology based on multi-source information fuzzy reasoning in airborne avionics systems
下载PDF
导出
摘要 为了保障导航的精度与可靠性,目前常采用多源信息融合导航。针对ADS/IRS/GPS组合导航系统,采用基于自适应信息分配的联邦滤波结构处理信息融合问题,并把模糊推理技术融入到ADS/IRS卡尔曼滤波器中,对IRS/GPS子滤波器采用紧组合模式,上述结构算法能对多源导航信息进行最优融合与处理。建立了ADS/IRS模糊自适应卡尔曼滤波模型以及IRS/GPS紧组合滤波模型,设计了自适应信息分配的联邦滤波算法,并进行了仿真,仿真结果验证了设计算法的有效性。 In order to ensure the accuracy and reliability of integrated navigation systems,the scheme of multi-source information fusion navigation is usually used.As for the navigation system integrated with inertial reference system(IRS)/ air data system(ADS)/ global positioning system(GPS),a federal filter structure based on adaptive information distribution is adopted to deal with information fusion of multi-source system,the fuzzy reasoning technology is introduced into ADS/IRS Kalman filter,and the tight integrated mode is used for IRS/GPS filter.The optimal fusion and processing of multi-source navigation information can be done through the structure algorithm mentioned above.The fuzzy adaptive Kalman filtering model of ADS/IRS and tight integrated filtering model of IRS/GPS are built in this paper,and federal filtering algorithm based on adaptive information distribution is designed.The simulation is carried out based on above algorithms.The simulation results verify the effectiveness of the proposed tightly-coupled navigation algorithm integrated with ADS/IRS/GPS.
出处 《现代电子技术》 2012年第16期114-118,129,共6页 Modern Electronics Technique
基金 国家自然科学基金项目(61174197 91016019) 南京航空航天大学科研业务专项研究基金(NP2011049)资助
关键词 组合导航 模糊推理 紧组合 自适应联邦滤波 integrated navigation system fuzzy reasoning tight integration adaptive federated filter
  • 相关文献

参考文献2

二级参考文献14

  • 1刘锡祥,徐晓苏,刘建娟,冯丹琼.组合导航中模糊自适应Kalman滤波算法分析[J].中国惯性技术学报,2006,14(3):31-35. 被引量:9
  • 2Escam illa-Ambrosio P J, Mport N. Multiseusor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic Performance Assessment. Proceedings of the Fifth Intemational Conference on Information Fusion, FUSION 2002. Annapolis, USA,July 2002, 2:1542- 1549.
  • 3Sasiakek J Z, Wang Q, Zeremba M B. Fuzzy Adaptive Kalman Filtering For INS/GPS Data Fusion. Proceedings of the 15th IEEE Intelligent Control, Rio, Patras, GREECE. July , 2000, 17- 19:181 - 186.
  • 4FU Meng-yin,DENG Zhi-hong,ZHANG Jin-wei.Kalman filter theory and its application for the navigation system[M].Beijing:Science Press,2003:77-79.
  • 5WANG Bin,WANG Jian,WU Jian-ping.Study on adaptive GPS/INS integrated navigation system[C]//2003 IEEE Proceedings on Intelligent Transportation Systems.Shanghai,China,2003:1016-1021.
  • 6Hide C D,Moore T,Smith M J.Adaptive Kalman filtering algorithms for integrating GPS and low cost INS[C]// Proceedings of the IEEE Position Location and Navigation Symposium.Monterey,California,April 2004:227-233.
  • 7Sasiadek J Z,Wang Q,Zeremba M B.Fuzzy adaptive Kalman filtering for INS/GPS data fusion[C]//Proceedings of the 15th IEEE International Symposium on Intelligent Control.Rio,Patras,Greece,July 17-19,2000:181-186.
  • 8Loebis D,Sutton R,Chudley J,et al.Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system[J].Control Engineering Practice,2004,12 (12):1531-1539.
  • 9ZHANG San-tong,WEI Xue-ye.Fuzzy adaptive Kalman filtering for DR/GPS[C]//Proceeding of the Second International Conference on Machine Learning and Cybernetics.Xi an,China,2003:2634-2637.
  • 10Mehra R K.On-line identification of linear dynamic systems with applications to Kalman filtering[J].IEEE Transaction on Automatic Control,1971,16(1):12-21.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部