期刊文献+

基于局部结构张量的无参考型图像质量评价方法 被引量:24

A No-reference Image Quality Assessment Method Using Local Structure Tensor
下载PDF
导出
摘要 该文提出一种基于局部结构张量奇异值分解的无参考型图像质量评价方法,由于图像局部结构张量能反映图像几何结构,因此利用张量特征值之间的关系来度量图像噪声与模糊水平,将两个度量结合得到图像质量的综合评价。通过分析仿真图像和实际图像的质量评价结果,该方法能同时度量因噪声和模糊造成失真后的图像质量。与图像质量评价数据库的主观评价结果比较表明,该文方法与主观评价结果相关性强,能很好地反映图像质量的视觉感知效果,并且易于实现。 A new image quality metric is proposed, it can be used to predict the no-reference image quality. Based on the Singular Value Decomposition (SVD) of the local structure tensor of the image, the noise and blur level is measured using the characteristic of singular value. The performance of the method is evaluated with a publicly available database of images and their quality score. The results show that the proposed no-reference method for the quality prediction of noise and blur images has a comparable performance to the leading metrics available in literature, and also that the inethod is easier to implement.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1779-1785,共7页 Journal of Electronics & Information Technology
关键词 图像质量评价 奇异值分解 局部结构张量 无参考型 Image Quality Assessment (IQA) Singular Value Decomposition (SVD) Local structure tensor No-reference
  • 相关文献

参考文献29

  • 1Liu H T, Redi J, Alers H, et al.. No-reference image qualityassessment based on localized gradient statistics: applicationto JPEG and JPEG2000[C]. Proceedings of SPIE, 2010,7527(1): 75271F.
  • 2Wang Z, Bovik A C, Sheikh H R, et al.. Image qualityassessment: from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612.
  • 3Sheikh H R and Bovik A C. Image information and visualquality[J]. IEEE Transactions on Image Processing, 2006,15(2): 430-444.
  • 4Mansouri A, Aznaveh A, Torkamani-Azar F, et al.. Imagequality assessment using the singular value decompositiontheorem[J]. Optical Review, 2009, 16(2): 49-53.
  • 5Lahoulou A, Viennet E, Bouridane A, et al.. A completestatistical evaluation of state-of-the-art image qualitymeasures[C]. 7th International Workshop on Systems, SignalProcessing and Their Applications (WOSSPA), Tipaza,Algeria, 2011: 219-222.
  • 6Moorthy A and Bovik A. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364.
  • 7Cohen E and Yitzhaky Y. No-reference assessment of blurand noise impacts on image quality[J]. Signal, Image andVideo Processing, 2010, 4(3): 289-302.
  • 8Wang Z, Xie Z, and He C. A fast quality assessment of imageblur based on sharpness[C]. 3rd International Congress onImage and Signal Processing (CISP), Yantai, China, 2010:2302-2306.
  • 9Xin W, Baofeng T, Chao L, et al.. Blind image qualityassessment for measuring image blur[C]. 2008 Congress onImage and Signal Processing (CISP 2008), Sanya, China,2008: 467-470.
  • 10Congli L, Xiushun Y, Wenbing C, et al.. Study on the IQAmethod for polarization image based on degree of noisepollution[C]. International Conference on Information andAutomation, Zhuhai, China, 2009: 1468-1472.

同被引文献303

引证文献24

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部