期刊文献+

大气折射对雷达低仰角跟踪误差的影响分析 被引量:14

Influence Analysis of Atmospheric Refraction on Low-angle Radar Tracking Errors
下载PDF
导出
摘要 该文基于雷达测角原理和确定性电波传播模型,采用等效地球半径法考虑大气折射效应,建立仰角误差预测方法;计算不同大气折射环境下的仰角误差。研究结果证明:大气折射与多路径的综合效应中,折射环境的变化会对仰角误差造成很大影响,表明大气折射是低仰角跟踪时需要考虑的重要因素。 In this paper, based on the principle theory of angle tracking and the deterministic propagation modeling a method of predicting the errors in the measured elevation angle is presented, which adopt the effective earth's radius to represent the atmospheric refraction effects. The errors of elevation angle are simulated in different refraction environments. The results of the study prove that the change of atmospheric refraction can affect the errors of elevation angle notablely associated with the multipath effects, indicating the atmospheric refraction is a key factor to be considered in low-angle tracking.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1893-1896,共4页 Journal of Electronics & Information Technology
关键词 雷达目标跟踪 大气折射 等效地球半径 多路径 低仰角跟踪 Radar target tracking Atmospheric refraction Effective earth's radius Multipath Low-angle tracking
  • 相关文献

参考文献3

二级参考文献23

  • 1赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523. 被引量:30
  • 2张文俊,赵永波,张守宏.广义MUSIC算法在米波雷达测高中的应用及其改进[J].电子与信息学报,2007,29(2):387-390. 被引量:19
  • 3贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法[J].电子学报,1997,25(6):71-76. 被引量:17
  • 4[1]SHERMAN S M.Complex indicated angles applied to unresolved radar targets and multipath[J].IEEE Trans,1971,AES-7(1):160-170.
  • 5[2]WHITE W D.Low-angle radar tracking in the presence of multipath[J].IEEE Trans,1974,AES-10(6):835-852.
  • 6[3]TRUNK G V,et al.Bounds on elevation error estimates of a target in multipath[J].IEEE Trans,1979,AES-15(6):883-887.
  • 7[4]ZOLTOWSKI M,et al.Beamspace ML bearing estimation incorporating low-angle geometry[J].IEEE Trans,1991,AES-27(3):441-458.
  • 8[5]SCHMIT R.Multiple emitter location and signal parameter estimation[J].IEEE Trans,1986,AP-34(3):276-280.
  • 9[6]ZISKIND I,et al.Maximum likelihood localization of multiple sources by alternating projection[J].IEEE Trans,1988,ASSP-36(10):1553-1560.
  • 10[10]LI J,et al.Maximum likelihood angle estimation for signals with known waveforms[J].IEEE Trans,1993,SP-41(9):2850-2861.

共引文献54

同被引文献120

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部