期刊文献+

基于人工噪声的多用户MIMO系统加密算法 被引量:4

A Multi-user MIMO System Encryption Algorithm Based on Artificial Noise
下载PDF
导出
摘要 当多用户MIMO系统中的用户数多于或等于发射端天线数时,现有的基于人工噪声的物理层加密算法会导致合法用户无法正常接收。为提高此时的多用户MIMO系统的安全性,该文提出一种新的基于人工噪声的多用户MIMO系统加密算法。首先,发送端对多个合法用户进行联合处理,建立多用户联合信道状态矩阵;然后,将联合信道状态矩阵进行奇异值分解,并根据最小的奇异值进行预编码,以消除人工噪声对合法用户的影响;最后,提出一种优化功率分配的方案。仿真结果表明,该算法将多用户MIMO系统的保密容量平均增加了0.1 bit/(s Hz),从而提高多用户MIMO系统的安全性。 The existing physical layer encryption algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in the multiuser MIMO system. In order to improve the multiuser MIMO system security under this scenario~ this paper proposes a new multiuser MIMO system physical layer encryption algorithm based on joint channel state matrix. Firstly, multiple users are processed together, thus a multiuser joint channel state matrix is established. After Singular Value Decomposition (SVD) of the joint channel state matrix, the minimum singular value is obtained and can be utilized for pre-coding, so as to eliminate the interference of artificial noise to legitimate receivers. Farther, the paper also presented an approach to optimize the power allocation. The simulation results show that the proposed algorithm can increase the secrecy capacity by 0.1 bit/(s- Hz) averagely, and improve the multiuser MIMO system security.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1939-1943,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61171108)资助课题
关键词 多用户MIMO系统 联合信道状态矩阵 保密容量 人工噪声 物理层安全 Multiuser MIMO system Joint channel state matrix Secrecy capacity Artificial noise Physical layersecurity
  • 相关文献

参考文献11

  • 1Negi R and Goel S. Secure communications using artificialnoise[C]. IEEE Vehicle Technology Conference(VTC), Dallas,TX, September 2005: 1906-1910.
  • 2Goel S and Negi R. Guaranteeing secrecy using artificialnoise[J]. IEEE Transactions on Wireless Communications,2008, 7(6): 2180-2189.
  • 3Ghogho M and Swami A. Physical layer secrecy of MIMOcommunications in the presence of a poisson random field ofeavesdroppers[C]. IEEE ICC Workshop on Physical LayerSecurity, Kyoto, Japan, June 2011: 1-5.
  • 4Ghogho M and Zurita1 N R. Physical layer security of MIMOfrequency selective channels by beamforming and noisegeneration[C]. European Signal Processing Conference,Barcelona, Spain, Augest 2011: 829-833.
  • 5Mukherjee A and Swindlehurst A L. Utility of beamformingstrategies for secrecy in multiuser MIMO wiretap channels[C].Proceedings of the Forty-Seventh Allerton Conference,Monticello, Oct. 2009: 1134-1141.
  • 6Liao W, Chang T, and Ma W. Joint transmit beamformingand artificial noise design for QoS discrimination in wirelessdownlink[C]. Proceedings of the IEEE InternationalConference on Acoustics, Speech, and Signal Processing,Dallas, Mar. 2010: 2562-2565.
  • 7Ekrem E and Ulukus S. The secrecy capacity region of theGaussian MIMO multi-receiver wiretap channel[J]. IEEETransactions on Information Theory, 2011, 57(4): 2083-2114.
  • 8Khisti A and Wornell G W. Secure transmission withmultiple antennas Part II: the MIMOME wiretap channel[J].IEEE Transactions on Information Theory, 2010, 56(11):5515-5532.
  • 9Khisti A and Wornell G W. Secure transmission withmultiple antennas I: the MISOME wiretap channel[J]. IEEETransactions on Information Theory, 2010, 56(7): 3088-3104.
  • 10Zhou X and Mckay M R. Secure transmission with artificialnoise over fading channels: achievable rate and optimal powerallocation[C]. International Conference Signal Processing andCommunication Systems, Omaha, NE, Oct. 2010: 3831-3842.

同被引文献28

  • 1Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387.
  • 2Lin S C and Lin P H. On secrecy capacity of fast fading multiple-input wiretap channels with statistical CSIT[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(2): 414-419.
  • 3Lin P H, Lai S H, Lin S C, et al: On secrecy rate of the generalized artificial-noise assisted secure beamforming forwiretap channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1728-1740.
  • 4Li Q, Ma W K, and So A M C. A safe approximation approach to secrecy outage design for MIMO wiretap channels[J]. IEEE Signal Processing Letters, 2014, 21(1): 118-121.
  • 5Li J Y and Petropulu A P. Explicit solution of worst-case secrecy rate for MISO wiretap channels with spherical uncertainty[J]. IEEE Transactions on Signal Processing, 2012 60(7): 3892-3895.
  • 6Li Q and Ma W K. Spatially selective artificial-noise aided transmit optimization for MISO multi-eves secrecy rate maximization[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2704-2717.
  • 7Tang Y Q, Xiong J, Ma D T, et al: Robust artificial noise aided transmit design for MISO wiretap channels with channel uncertainty[J]. IEEE Communications Letters, 2013, 17(11): 2096-2099.
  • 8Wajid I, Pesavento M, Eldar Y C, et al: Robust downlink beamforming with partial channel state information for conventional and cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2013, 61(14): 3656-3670.
  • 9Wajid I, Pesavento M, Eldar Y C, et al: Robust downlink beamforming for cognitive radio networks[C]. IEEE Global Communications Conference (GLOBECOM), Miami, FL, USA, 2010: 1-5.
  • 10Zheng G, Wong K K, and Ottersten B E. Robust cognitive beamforming with bounded channel uncertainties[J]. IEEE Transactions on Signal Processing, 2009, 57(12): 4871-4881.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部