摘要
介绍了快速傅立叶变换在苹果形状识别中的应用,首先需要将苹果图像的边缘像素进行极坐标转换,经过FFT变换后的数据较多,因此还需采用主成份分析法对其进行处理,得到能够描述苹果形状的两个主成份值。
In order to improve robustness of the traditional adaptive particle swarm optimization algorithm, a novel adaptive algorithm which is called Cloud Adaptive Particle Swarm Optimization algorithm (CAPSO) is proposed. In the CAPSO, the inertia weight is adaptively varied depending on X-conditional cloud generator. CAPSO can improve its convergence capacity because of the stable tendency of cloud model. Meanwhile, it can remarkably avoid a local minimum using the randomness of cloud model to maintain diversity in the population. The performance of the CAPSO which is used for solving numerical integral of any function shows that the presented numerical integral al- gorithm has value in engineering practice.
出处
《计算机工程与应用》
CSCD
2012年第24期53-56,84,共5页
Computer Engineering and Applications
基金
广西自然科学基金(No.0991086)
广西教育厅科研项目(No.201010LX088)
广西混杂计算与集成电路设计分析重点实验室资助
关键词
快速傅立叶变换
苹果
形状
主成分分析
cloud theory
Adaptive Particle Swarm Optimization algorithm (APS0)
Cloud Adaptive Particle SwarmOptimization algorithm(CAPS0)
numerical integral