期刊文献+

基于稀疏表示的SAR图像压缩方法研究 被引量:4

SAR image compression based on sparse representation
下载PDF
导出
摘要 基于过完备字典的图像稀疏表示是一种新的图像表示理论,利用过完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示。采用基于过完备字典稀疏表示的方法实现SAR图像的压缩。为了得到表示图像所需要的信息,只需要存储稀疏分解的系数极其对应的坐标,实现压缩的目的。采用K-SVD算法实现过完备字典的构造。K-SVD算法是一种基于学习的算法,由于训练样本全部来自于图像本身,因此字典能够更好地逼近图像本身的结构,实现稀疏表示。仿真表明对于SAR图像的压缩,算法是有效的,并且优于基于DCT的Jpeg算法和基于小波变换的EZW和SPIHT算法。 The sparse representation based on over-complete dictionary is a new image representation theory.The redundancy of over-complete dictionary can make it effectively capture the geometrical characteristics of the images.SAR image compression is achieved based on over-complete dictionary sparse representation.Only the sparse decomposition coefficients and the index are needed to be stored in order to seize the image's information.A learning method—K-SVD is adopted to design the dictionary.Because the training examples are all from the image itself,the dictionary should be more approximate to the image's structure.The simulation implies the proposed method is useful for SAR image compression and it outperforms the DCT based Jpeg method and the wavelet based EZW and SPIHT method.
作者 蔡红
出处 《计算机工程与应用》 CSCD 2012年第24期177-181,共5页 Computer Engineering and Applications
关键词 稀疏表示 图像压缩 K-SVD算法 小波变换 sparse representation image compression K-SVD algorithm wavelet transform
  • 相关文献

参考文献13

二级参考文献59

  • 1G. Franceschettii, S. Merolla, M. Tesauro, Phase quantized SAR signal processing: Theory and experiments [ J], IEEE Transactions on Aerospace and Electronic System, Vol. 35, No. 1 pp. 201-214,1999.
  • 2S. Eddins, M. Smith, A three-source muhirate model for image compression [ C ] , In Proc. ICASSP, Albuquerque, NM. PP. 2089-2092,1990.
  • 3Z. Jiefu,W. Zhensong,SAR Image Compression at very Low Bit-rate[ C ], 7th International Conference on Signal Processing,Volume: 3, On page ( s ) : 2167 vol. 3,31 Aug. - 4 Sept. 2004.
  • 4C. Alan, M. Kristo, L. Austin, L. Margaret, A Compression of Detected SAR imagery with JPEG2000[ C ], Proceedings of SPIE - The International society, for optical engineering, 2000, vol. 4115, pp. 510-520.
  • 5L. Maotang, G. Jingbo, Z. Jinping, L. Yuzhong, Real-time imagery compression method research [ C ] , Earth Observ- ing Systems Ⅷ. Edited by Barnes, William L. Proceedings of the SPIE, Volume 5151, pp. 531-539 (2003).
  • 6R. Cirillo, L. Poehler, N. Ziemba, Adaptive Compression Algorithm Results for Complex Synthetic Aperture Radar Data [ C ], Proceedings of SPIE, Volume 5095, Algorithms for Synthetic Aperture Radar Imagery X, Edmund G. Zelnio, Frederick D. Garber, September 2003, pp. 26-32.
  • 7H. Xingsong, L. Guizhong, Z. Yiyang, SAR Image Data Compression Using Wavelet Packet Transform and Universal- Trellis Coded Quantization [ C ], IEEE Transactions On Geoscience and Remote Sensing, Vol. 42, NO. 11, November 2004.
  • 8Nasrabadi, Nasser, Sattler, P. Joseph, Kwon, Heesung, Rizvi,Syed, High compression of SAR imagery for battlefield surveillance[ C ], Proc. SPIE Vol. 2757 ,pp. 397-408, Algorithms for Synthetic Aperture Radar Imagery Ⅲ,06/1996.
  • 9L. Hanqiang, H. Biao, W. Shuang, J. Licheng, SAR Image Compression Using Bandelets and SPIHT[ C],Proceedings of 2006 CIE International Conference on Radar, Oct. 16, 2006, Shanghai, China.
  • 10You YI, Kaveh M. Fourth-Order partial differential equations fomoise removal [ J ]. IEEE Transaction on Image Processing,2000,9(10) 1723-1730.

共引文献40

同被引文献15

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部