期刊文献+

热轧工艺对Fe-20Mn-3Cu-1.3C TWIP钢组织致密度和力学性能的影响 被引量:2

Effect of hot rolling process on microstructure density and mechanical properties of Fe-20Mn-3Cu-1.3C TWIP steel
原文传递
导出
摘要 通过真空熔炼制备出高强韧Fe-20Mn-3Cu-1.3C TWIP钢。针对该合金钢凝固组织中易形成显微缩松的问题,在总热轧压下率相同的条件下,研究了道次平均压下率的变化对消除合金钢微孔缺陷和力学性能的影响。结果表明,随着道次平均压下率由35.96%提高至48.75%,合金内部微孔面密度显著降低,平均晶粒尺寸减小,合金的屈服强度、抗拉强度、强塑积大幅度提高。当道次平均压下率为48.75%时,屈服强度、抗拉强度和伸长率分别为536.70 MPa、1161.49 MPa、95.60%,强塑积高达111038.44 MPa.%,与当道次平均压下率为35.96%时相比,强塑积提高了47.70%,这一结果是目前TWIP钢综合力学性能数据的最高值。表明提高道次平均压下率消除缩松缺陷是提高该TWIP钢力学性能的关键。 Fe-20Mn-3Cu-1.3C TWIP steels with the combination of high strength and high toughness were prepared by vacuum melting. To address the problem that micro-porosity easily formed in the solidification structure, the effect of average reduction per pass on micropore elimination and tensile mechanical properties under the same total hot rolling reduction was studied. The results show that when the average reduction per pass raises from 35.96% to 48.75% , the section density of mieropore in the alloys remarkably decreases and the average grain size decreases as well, and the yield strength, tensile strength and strength-plasticity product are also greatly enhanced. When the average reduction per pass is 48.75% , the yield strength, tensile strength and elongation percentage is 536.70 MPa, 1161.49 MPa and 95.60% , respectively. And the strength-plasticity product is 111038.4 MPa·%, which increases by 47.70% compared with the data obtained from the average reduction per pass at 35.96% and the result is the highest value of performance data of TWIP steels so far. Eliminating micropore by increasing the average reduction per pass is the key to improve mechanical properties of the TWIP alloy.
出处 《金属热处理》 CAS CSCD 北大核心 2012年第8期93-97,共5页 Heat Treatment of Metals
基金 福建省高校产学合作科技重大项目(2011H6012) 福建省自然科学基金(2011J01292)
关键词 TWIP钢 道次平均压下率 热轧工艺 微孔缺陷 力学性能 TWIP steel average reduction per pass hot rolling process micropore mechanical properties
  • 相关文献

参考文献16

  • 1Vercammen S, Blanpain B, Cooman B C C, et al. Cold rolling behaviour of an austenitic Fe-3OMn-3AI-3Si TWIP steel: the importance of deformation twinning [ J ]. Acta Materialia, 2004, 52 : 2005 -2012.
  • 2Grassel O, Kruger L, Frommeyer G, et al. High strength Fe-Mn-( A1, Si ) TRIP/TWIP steels development-properties-application [ J ]. International Journa/of Plasticity, 2000, 16 ( 10 -11 ) : 1391-1409.
  • 3Rintaro U, Kenji H, Noriyuki T. High speed deformation of ultrafine grained TWIP steel [ J 1. Materials Science Forum, 2007,561-565 : 107-110.
  • 4Idrissi H, Renard K, Ryeland L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels [ J 1. Aeta Materialia, 2010, 58 (10) : 2464-2476.
  • 5Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9A1-0. 8C steel [ J ]. Materials Science and Engineering: A, 2009, 508 ( 1-2 ) : 234-240.
  • 6温鸿英,朱定一,王明杰,乔卫,廖琳.碳含量对新型Fe-Ni-Mn-Si-C系TWIP钢组织和力学性能的影响[J].钢铁,2010,45(6):74-78. 被引量:6
  • 7易炜发.新型含铜高碳TWIP钢组织和力学性能的研究[D].福州:福州大学材料科学与工程学院,2011.
  • 8赵乾,朱伏先,崔凤平,房轲.轧制工艺对铸坯缩孔焊合行为的影响[J].塑性工程学报,2007,14(2):47-49. 被引量:8
  • 9袁朝龙,钟约先,马庆贤.材料内部孔隙性缺陷自修复过程[J].塑性工程学报,2002,9(2):12-16. 被引量:12
  • 10Wang A, Thomson P F, Hodgson P D. A study of pore closure and welding in hot rolling process [ J ]. Journal of Materials Processing Technology, 1996, 60: 95-102.

二级参考文献28

  • 1米振莉,唐荻,严玲,郭锦.高强度高塑性TWIP钢的开发研究[J].钢铁,2005,40(1):58-60. 被引量:36
  • 2黄宝旭,王晓东,戎咏华,王利.TWIP钢研究的现状与展望[J].热处理,2005,20(4):4-6. 被引量:23
  • 3钟志平.大型筒体锻件组织性能控制与高温裂纹修复实验研究:博士学位论文[M].北京:清华大学,1998..
  • 4韩静涛.大型饼类锻件夹杂性裂纹形成机理及控制锻造工艺研究:博士学位论文[M].北京:清华大学,1995..
  • 5金宁.大锻件孔隙性缺陷的压合与焊合规律的研究及高温栅的研究:博士学位论文[M].北京:清华大学,1990..
  • 6王玉庆 周本濂.国外对材料自愈合的研究.国家自然科学基金委员会“材料自恢复,愈合学术研讨会”[M].北京,1997,6..
  • 7[1]Grange R A. US Pat, 3 201 288, 1965
  • 8[2]Grange R A, Sharchelford E R. US Pat, 3178 324, 1965
  • 9[3]Tamura I, Sekine H, Tanaka T, Ouchi C. Thermomechanical Processing of High-Strength Low-Alloying Steels.London: Butterworth, 1988:58
  • 10[4]Tokizane M. Metall Trans, 1982; 13A: 1379

共引文献51

同被引文献21

  • 1张旺峰,朱金华,曹春晓.奥氏体锰钢高应变速率孪生诱导塑性[J].机械工程材料,2005,29(3):14-17. 被引量:3
  • 2Lee T Y,Koyama M,Tsuzaki K,et al.Tensile deformation behavior of Fe-Mn-C TWIP steel with ultrafine elongated grain structure[J].Materials Letters,2012,75(1):169-171.
  • 3Dancette S,Delannay L,Renard K,et al.Crystal plasticity modeling of texture development and hardening in TWIP steels[J].Acta Materialia,2012,60(1):2135-2145.
  • 4Peng X,Zhu D Y,Hu Z M,et al.Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels:Effect of Cu addition[J].Materials &Design,2013,45(1):518-523.
  • 5Liu H J,Zhu D Y,Peng X.Dynamic strain aging in the Fe-Mn-Cu-C TWIP steels[J].Advanced Materials Research,2013,668(1):861-864.
  • 6LEE T Y,KOYAMA M, TSUZAKI K,et al. Tensiledeformation behavior of Fe-Mn-C TWIP steel with ultrafineelongated grain structure[J]. Materials Letters, 2012, 75(1):169-171.
  • 7DANCETTE S, DELANNAY L, RENARD K, et al. Crystalplasticity modeling of texture development and hardening inTWIP steels[J]. Acta Materialia, 2012,60(1): 2135-2145.
  • 8LIU H J, ZHU D Y,PENG X. Dynamic strain aging in theFe-Mn-Cu-C TWIP steels [J]. Advanced Materials Research,2013, 668(1):861-864.
  • 9PENG X,ZHU D Y,HU Z M,et al. Stacking fault energyand tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition[J].Materials &-Design,2013,45(1):518-523.
  • 10WANG A,THOMSON P F,HODGSON P D. A study ofpore closure and welding in hot rolling process [J]. Journal ofMaterials Processing Technology, 1996,60(1/4) : 95-102.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部