期刊文献+

Thermal Decomposition Kinetics of High Impact Polystyrene/ Organo Fe-montmorillonite Nanocomposites

Thermal Decomposition Kinetics of High Impact Polystyrene/ Organo Fe-montmorillonite Nanocomposites
原文传递
导出
摘要 In this article, high impact polystyrene/organo Fe-montmorillonite (HIPS/Fe-OMT) nanocomposites were prepared by melting intercalation. The thermal stability of HIPS/Fe-OMT nanocomposites increased significantly compared to that of HIPS examined in thermal degradation conditions. Kinetic evaluations were performed by Kissinger, Flynn-Wall-Ozawa, Friedman methods and multivariate nonlinear regression. Apparent kinetic parameters for the overall degradation were determined. The resuRs showed that the activation energy of HIPS/Fe-OMT nanocomposites was higher than that of HIPS. A very good agreement between experimental and simulated curves was observed in dynamic conditions. Their decomposition reaction model was a single-step process of an nth-order reaction In this article, high impact polystyrene/organo Fe-montmorillonite (HIPS/Fe-OMT) nanocomposites were prepared by melting intercalation. The thermal stability of HIPS/Fe-OMT nanocomposites increased significantly compared to that of HIPS examined in thermal degradation conditions. Kinetic evaluations were performed by Kissinger, Flynn-Wall-Ozawa, Friedman methods and multivariate nonlinear regression. Apparent kinetic parameters for the overall degradation were determined. The resuRs showed that the activation energy of HIPS/Fe-OMT nanocomposites was higher than that of HIPS. A very good agreement between experimental and simulated curves was observed in dynamic conditions. Their decomposition reaction model was a single-step process of an nth-order reaction
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第7期1594-1600,共7页 中国化学(英文版)
关键词 Fe-montmorillonite high impact polystyrene NANOCOMPOSITES thermal degradation thermal kinetic analysis Fe-montmorillonite, high impact polystyrene, nanocomposites, thermal degradation, thermal kinetic analysis
  • 相关文献

参考文献28

  • 1Ren, C. Y.; Du, X. H.; Ma, L.; Wang, Y. H.; Zheng, J.; Tang, T. Polymer 2010,51,3416.
  • 2Katsoulis, C.; Kandare, E.; Kandola, B. K. Polym. Degrad. Stab. 2011, 96, 529.
  • 3Wang, X. Q.; Wang, Y. Q.; Zhao, Z. L.; Zhu, X. G.; Nie, C.; Du, S. Y. Chin. J. Chem. 2011,29, 1278.
  • 4Dunkerley, E.; Koerner, H.; Vaia, R. A. Polymer 2011,52, 1163.
  • 5Liu, S. P.; Huang, I. J.; Chang, K. C.; Yeh, J. M. J. Appl. Polym. Sci. 2010, 115,288.
  • 6Giannakas, A.; Spanos, C. G.; Kourkoumelis, N. Eur. Polym. J. 2008, 44,3195.
  • 7Kelnar, I.; Rotrekl, J.; Kotek, 1.; Kapralkova, L. Polym.1nt. 2008, 57, 1281.
  • 8Yei, D. R.; Fu, H. K.; Chang, Y. H.; Kuo, S. W.; Huang, J. M.; Chang, F. C. J. Polym. Sci. Part B-Polym. Phys. 2007, 45, 1781.
  • 9Lu, H. D.; Wilkie, C. A. Polym. Degrad. Stab. 2010, 95, 2388.
  • 10ang, Z.; Du, X. H.; Yu, H. 0.; Jiang, Z. W.; Liu, J.; Tang, T. Polymer 2009,50,5794.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部