摘要
The effect of TGO ( thermally grown oxide ) growth based on typical interface morphology on residual stresses distribution in thermal barrier coatings was analyzed by ABAQUS software. TGO oxidation kinetics, the relationship between TGO thickness and thermal cycles number, and typical morphology including sinusoid , cone and groove were considered in the calculation process. 13 FEM (finite element method) models with different TGO thickness based on uniform interface morphology were established for analysis. The calculation results show that TCC ( top ceramic coating ) /TGO and TGO/BC (bond coating) interface residual stresses are affected significantly by inter)hce morphology and TGO thickness, both of which increase significantly with TGO growth ; the stress level in TCC/TGO interface is greater than that of TGO/BC interface ; each morphology peak exhibits tensile stress while each valley exhibits compressive stress in TCC/TGO interface; stress concentrates in such locations as each morphology center with sharp angle and the stress reaches the maximal value at the tip of each angle.
The effect of TGO ( thermally grown oxide ) growth based on typical interface morphology on residual stresses distribution in thermal barrier coatings was analyzed by ABAQUS software. TGO oxidation kinetics, the relationship between TGO thickness and thermal cycles number, and typical morphology including sinusoid , cone and groove were considered in the calculation process. 13 FEM (finite element method) models with different TGO thickness based on uniform interface morphology were established for analysis. The calculation results show that TCC ( top ceramic coating ) /TGO and TGO/BC (bond coating) interface residual stresses are affected significantly by inter)hce morphology and TGO thickness, both of which increase significantly with TGO growth ; the stress level in TCC/TGO interface is greater than that of TGO/BC interface ; each morphology peak exhibits tensile stress while each valley exhibits compressive stress in TCC/TGO interface; stress concentrates in such locations as each morphology center with sharp angle and the stress reaches the maximal value at the tip of each angle.
基金
This work was supported by National Natural Science Foundation of China (No. 60879018).