期刊文献+

基于多参考信号ICA的目标语音提取方法 被引量:1

Target speech extraction method based on multiple reference signals ICA algorithm
下载PDF
导出
摘要 为了能够在强噪声、干扰声等复杂环境下提取干净的目标语音,提高输出信号的信噪比和信干比,本文提出了一种基于多参考信号ICA算法的语音提取方案。该方法利用声源定位、波束形成和小波分解等算法结果作为参考信号,应用基于负熵的FastICA算法估计目标语音。使用麦克风阵实测语音信号的仿真实验证明,本文提出的算法能有效地抑制背景噪声和干扰声,恢复目标语音波形和语谱图。与常规波束形成和ICA算法相比较,本文的处理方法有更好的性能,输出信号的信噪比和信干比更高。 In order to improve the signal noise ratio (SNR) and signal interference ratio (SIR) of the output speech signal and extract pure target speech in the environment with strong noises and interferences, a novel target speech extraction method based on multiple reference signals independent component analysis ^(ICA) algorithm is proposed in this paper. Firstly, reference signals are acquired by source localization, beamforming and wavelet translation algorithms. Then the target speech is estimated by FastlCA algorithm based on the negative entropy combined with the reference signals. Simulations and experiments using microphone array signals demonstrated that background noises and interference speech were reduced and pure target speech waveform and spectrogram were recovered effectively. Compared to traditional beamforming and ICA algorithms, the proposed method achieved better performance such as higher SNR and SIR.
作者 王青云 宗慧
出处 《微计算机信息》 2012年第8期14-16,共3页 Control & Automation
基金 基金申请人:王青云 赵力等 项目名称:耳语音情感特征分析与识别方法研究 基金颁发部门:国家自然科学基金委(60975017)
关键词 目标语音提取 多参考信号ICA 波束形成 小波分解 target speech extraction multiple reference signals ICA bearmforming wavelet translation
  • 相关文献

参考文献12

  • 1H. Sawada,S. Araki,R. Mukai, et al. Blind extraction of domi- nant target sources using ICA and time-frequency masking [J]. IEEE transaction on audio, speech and language processing, vol.14 (6), 2006: 2165-2173.
  • 2Jacob Benesty, Jingdong Chen, et al. On microphone-array beamforming from a MIMO acoustic signal processing perspective [J]. 1EEE transaction on audio, speech and language processing, vol. 15 (3), 2007: 1053-1065.
  • 3C. J. James, D lowe. Single channel analysis of electromagnetic brain signals through ICA in a dynamical systems framework [C]. 2001 prceedings of the 23rd Annual EMBS International Confer- ence, October 25-25, Istanbul, Turkey 2001: 1974-1977.
  • 4C. J. James, C. W. Hesse. On the use of Spectrally Constrained ICA applied to single-channel Ictal EEG recordings within a Dy- namical Embedding Framework [C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai. China. Sentember 1-4.2005: 956-959.
  • 5C.W. Hesse, C. J. James. The FastICA algorithm with spatial constraints [J]. IEEE signal processing letters, vo1.12 (11), 2005: 792-795.
  • 6J. P. Dmochowski, J. Benesty, and S. Affes. Broadband MUSIC: opportunities and challenges for multiple source localization [C]. In Proc. IEEE WASPAA, 2007: 18-21.
  • 7T. L. Tung, et al. Source localization and spatial filtering using wideband music and maximum power beamforming for multimedia applications [J]. IEEE workshop on Signal Processing systems 1999: 625-634, 1999.
  • 8M. K. Hasan, S. Salahuddin, M. R. Khan. A modified a priori SNR for speech enhancement using spectral subtraction rules [J]. IEEE signal processing letters, vol. l 1(4), 2004: 450-453.
  • 9S. Chang, Y. Kwon, S. Yang. Speech enhancement for non-sta- tionary noise environment by adaptive wavelet packet [C]. 2002 IEEE international conference on acoustics, speech and signal pro- cessing (ICASSP 2002), Orlando, USA, 2002: I561-I564.
  • 10王和平,潘宏侠,黄晋英.基于小波特征提取的语音监测系统[J].微计算机信息,2010,26(12):28-29. 被引量:1

二级参考文献7

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部