期刊文献+

谱方法求解变黏度磁流体的边界层流动问题

Spectral Method for Solving the Flow Process in the Boundary Layer of Magnetic Fluid with Variable Viscosity
下载PDF
导出
摘要 以变黏度不可压缩磁流体为研究对象,研究稳恒磁场作用下磁流体外掠低温无渗透平板时,由于平板的水平拉伸引起的周围磁流体边界层内的层流流动和传热变化.首先采用相似原理对原控制方程组进行降维和无量纲化处理,并利用谱方法进行数值求解.设磁流体的黏度随温度线性变化,在不改变流场和温度场边界条件的前提下,研究了流体黏度变化参数、电磁参数和普朗特数对无量纲速度和无量纲温度的影响.把采用谱方法得到的结果与四阶龙格库塔法比较,验证了谱方法具有较高的数值稳定性和指数收敛特性. Focusing on the viscous incompressible magnetic fluid past a stretching impermeable sheet with lower temperature, the laminar flow and the heat transfer in its boundary layer caused by the tensile deformation of the plate were studied under a steady magnetic field. Dimension reducing and dimensionless processing of the original control equations were first carried out based on similarity principle, and then the equations were solved by a spectral method. Assuming that the fluid viscosity varied linearly with temperature, with the constant boundary conditions of flow and temperature fields, the effects were analyzed of the parameters of variable fluid viscosity, the electromagnetic parameters, and the Prandtl number on the flow and temperature fields. Compared with the classical fourth-order Runge-Kutta method, the spectral method is superior in stability and exponential convergence.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期1150-1153,1166,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51176026) 中央高校基本科研业务费专项资金资助项目(NN100309003)
关键词 磁流体 稳恒磁场 边界层 层流 谱方法 传热 magnetic fluid steady magnetic field boundary layer laminar flow spectral method heat transfer
  • 相关文献

参考文献11

  • 1Mukhopadhyay S, Layek G C, Samad S A. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity [ J ]. International Journal of Heat and Mass Trans[J]. 2005,48(21/22) :4460 - 4466.
  • 2Kousar N, Liao S. Unsteady non-similarity boundary-layer flows caused by an impulsively stretching flat sheet [ J ]. Nonlinear Analysis : Real World Applications, 2011, 12 (1) :333- 342.
  • 3Sharma R, Bhargava R, Bhargava P. A numerical solution of unsteady MHD convection heat and mass transfer past a semi- infinite vertical porous moving plate using element free Oalerkin method [ J 1. Computational Materials Science, 2010,48(3) :537 - 543.
  • 4Rao J S, Sankar H. Numerical simulation of MHD effects on convective heat transfer characteristics of flow of liquid metal in annular tubeEJ ]. Fusion Engineering and Design, 2011, 86(2/3):183 191.
  • 5Char M I. Heat and mass transfer in a hydromagnetic flow of viscoelastic fluid over a stretching sheet ~ J ]. Journal of Mathematical Analysis and Applications, 1994, 186 (3) : 674 - 689.
  • 6Eldabe N T, Elshehawey E F, Elsayed M E. Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet with heat transfer [ J ]. Applied Mathematics and Computation, 2005,160(2) :437 - 450.
  • 7Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux [J ]. Communications in Nonlinear Science and Numerical Simulation, 2009,14 (1) : 109 - 118.
  • 8Rashidi M M. The modified differential transform method forsolving MHD boundary-layer equations [ J ]. Computer Physics Communications, 2009,180( 11 ) :2210 - 2217.
  • 9Chiam T C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet [ J ]. Acta Mechanica, 1998,129(1/2) :63 - 72.
  • 10Pantokratoras A. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity: a numerical reinvestigation[J]. International Journal of Heat and Mass Transfer, 2008,51(1/2) :104 - 110.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部