期刊文献+

关于R^N上非齐次四阶椭圆方程的注记

A Note on a Nonhomogeneous Fourth-Order Elliptic Equation on R^N
下载PDF
导出
摘要 运用临界点理论中的Ekeland变分原理研究了非齐次四阶椭圆方程Δ2u-Δu+V(x)u=f(u)+h(x)u∈H2(RN)解的存在性,其中V∈C(RN,R)满足infx∈RNV(x)≥a1>0,这里a1>0是一个常数,更进一步,对每个M>0,meas({x∈RN:V(x)≤M})<∞,这里meas表示RN中的Lebesgue测度;f∈C(R,R+),f(0)=0,并且当z<0时f(z)≡0;limz→0f(z)/z=0,limz→+∞f(z)/z=l<+∞. By using the Ekeland’s variational principle in the critical point theory,we prove the existence of the non-trivial solutions for the nonhomogeneous Kirchhoff equationΔ2 u-Δu+V(x)u=f(u)+h(x) u∈H2(RN)wherein V and f meet the following conditions: V∈C(RN,R),satisfies infx∈RN V(x)≥a1〉0,where a1 is a constant.Moreover,for every M〉0,meas({x∈RN: V(x)≤M})〈∞,where meas denotes the Lebesgue measure in RN;f∈C(R,R+),f(0)=0,and f(z)≡0 when z〈0;limz→0 f(z)/z=0;limz→+∞ f(z)/z=l〈+∞.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第8期112-115,共4页 Journal of Southwest University(Natural Science Edition)
基金 重庆工商大学科研启动经费项目(2010-56-16)
关键词 四阶椭圆方程 非齐次 渐近线性 EKELAND变分原理 fourth-order elliptic equation nonhomogeneous asymptotically linear Ekeland’s variational principle
  • 相关文献

参考文献10

  • 1AN Yu-kun, LIU Ren-yi. Existence of Nontrivial Solutions of an Asymptotically Linear Fourth-Order Elliptic Equation [J]. Nonlinear Anal, 2008, 68(11): 3325-3331.
  • 2WANG Wei-hua, ZANG Ai-bin, ZHAO Pei-hao. Multiplicity of Solutions for a Class of Fourth Elliptic Equations [J]. Nonlinear Anal, 2009, 70(12): 4377-4385.
  • 3YANG Yang, ZHANG Ji-hui. Existence of Solutions for Some Fourth-Order Nonlinear Elliptic Problems [J]. J Math Anal Appl, 2009, 351: 128-137.
  • 4ZHOU Jian-wen, WU Xian. Sign-Changing Solutions for Some Fourth-Order Nonlinear Elliptic Problems [J]. J Math Anal Appl, 2008, 342: 542-558.
  • 5AYED M B, HAMMAMI M. On a Fourth-Order Elliptic Equation with Critical Nonlinearity in Dimension Six [J]. Nonlinear Anal, 2006, 64: 924-957.
  • 6AYED M B, HAMMAMI M. Critical Points at Infinity in a Fourth-Order Elliptic Problem with Limiting Exponent [J]. Nonlinear Anal, 2004, 59: 891-916.
  • 7AYOUJIL A, EL A R. Amrouss, On the Spectrum of a Fourth-Order Elliptic Equation with Variable Exponent [J]. Nonlinear Anal, 2009, 74: 1-11.
  • 8BENALILI M. Multiplicity of Solutions for a Fourth-Order Elliptic Equation with Critical Exponent on Compact Mani- folds [J]. Appl Math Lett, 2007, 20: 232-237.
  • 9YIN Yu-ling, WU Xian. High Energy Solutions and Nontrivial Solutions for Fourth-Order Elliptic Equations [J]. J Math Anal Appl, 2011, 375: 699-705.
  • 10EKELAND I. On the Variational Principle [J]. J Math Anal Appl, 1974, 47: 324-353.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部