期刊文献+

Cluster characters for cyclic quivers

Cluster characters for cyclic quivers
原文传递
导出
摘要 We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a Z-basis for the algebra generated by all generalized cluster variables. We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a Z-basis for the algebra generated by all generalized cluster variables.
作者 Ming DING Fan XU
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第4期679-693,共15页 中国高等学校学术文摘·数学(英文)
关键词 Cyclic quiver cluster algebra Z-basis Cyclic quiver, cluster algebra, Z-basis
  • 相关文献

参考文献12

  • 1Buan A,Marsh R,Reineke M,Reiten I. Todorov G.Tilting theory and cluster combinatorics[J].Advances in Mathematics,2006.572618.
  • 2Buan A,Marsh R,Vatne D. Cluster structure from 2-Calabi-Yau categories with loops[J].Mathematische Zeitschrift,2010,(04):951-970.
  • 3Caldero P,Chapoton F. Cluster algebras as Hall algebras of quiver representations[J].Commentarii Mathematici Helvetici,2006.595616.
  • 4Caldero P,Keller B. From triangulated categories to cluster algebras[J].Inventiones Mathematicae,2008,(01):169-211.doi:10.1007/s00222-008-0111-4.
  • 5Ding M,Xiao J,Xu F. Integral bases of cluster algebras and representations of tame quivers[J].Algebr Represent Theor,.
  • 6Fomin S,Zelevinsky A. Cluster algebras.I.Foundations[J].Journal of the American Mathematical Society,2002,(02):497-529.
  • 7Keller B. On triangulated orbit categories[J].Documenta Mathematica,2005.551-581.
  • 8Marsh R,Reineke M,Zelevinsky A. Generalized associahedra via quiver representations[J].Transactions of the American Mathematical Society,2003,(01):41714186.doi:10.1090/S0002-9947-03-03320-8.
  • 9Palu Y. Cluster characters for 2-Calabi-Yau triangulated categories[J].ANNALES DE L INSTITUT FOURIER,2008,(06):22212248.
  • 10Ringel C M. Tame Algebras and Integral Quadratic Forms[M].Beilin:Springer-Verlag,1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部