Cluster characters for cyclic quivers
Cluster characters for cyclic quivers
摘要
We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a Z-basis for the algebra generated by all generalized cluster variables.
We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a Z-basis for the algebra generated by all generalized cluster variables.
参考文献12
-
1Buan A,Marsh R,Reineke M,Reiten I. Todorov G.Tilting theory and cluster combinatorics[J].Advances in Mathematics,2006.572618.
-
2Buan A,Marsh R,Vatne D. Cluster structure from 2-Calabi-Yau categories with loops[J].Mathematische Zeitschrift,2010,(04):951-970.
-
3Caldero P,Chapoton F. Cluster algebras as Hall algebras of quiver representations[J].Commentarii Mathematici Helvetici,2006.595616.
-
4Caldero P,Keller B. From triangulated categories to cluster algebras[J].Inventiones Mathematicae,2008,(01):169-211.doi:10.1007/s00222-008-0111-4.
-
5Ding M,Xiao J,Xu F. Integral bases of cluster algebras and representations of tame quivers[J].Algebr Represent Theor,.
-
6Fomin S,Zelevinsky A. Cluster algebras.I.Foundations[J].Journal of the American Mathematical Society,2002,(02):497-529.
-
7Keller B. On triangulated orbit categories[J].Documenta Mathematica,2005.551-581.
-
8Marsh R,Reineke M,Zelevinsky A. Generalized associahedra via quiver representations[J].Transactions of the American Mathematical Society,2003,(01):41714186.doi:10.1090/S0002-9947-03-03320-8.
-
9Palu Y. Cluster characters for 2-Calabi-Yau triangulated categories[J].ANNALES DE L INSTITUT FOURIER,2008,(06):22212248.
-
10Ringel C M. Tame Algebras and Integral Quadratic Forms[M].Beilin:Springer-Verlag,1984.
-
1硬件类[J].网友世界,2006(19):93-93.
-
2马荣彪.图象代数基础及其硬件实现[J].电光与控制,1992(3):17-23.
-
3胡连荣.你问我答[J].知识就是力量,2009(12):80-80.
-
4张二峰,曹萌萌.《计算机基础》课程教学内容改革探讨[J].开封教育学院学报,2015,35(10):129-130.
-
5ZHANG XiaoJin.Cluster tilting for tilted algebras[J].Science China Mathematics,2012,55(6):1171-1178.
-
6宋志平,李应红,刘建勋.模糊故障图的代数基础及应用分析[J].航空动力学报,2002,17(1):127-131. 被引量:1
-
7孙志强,刘耀军.有限自动机的半环方法[J].太原师范学院学报(自然科学版),2009,8(2):68-70.
-
8张抗抗.回来的母亲[J].新校园(阅读版),2013(3):66-67.
-
9晒机[J].计算机应用文摘,2013(22):51-52.
-
10Newsboy.诺基亚HD Map:让谷歌颤抖的导航地图[J].中国测绘,2014(3):38-39.