期刊文献+

几何约束和改进SIFT的SAR影像和光学影像自动配准方法 被引量:30

An Automatic Registration Algorithm for SAR and Optical Images Based on Geometry Constraint and Improved SIFT
下载PDF
导出
摘要 提出一种基于几何约束和改进SIFT的SAR影像和光学影像自动配准方法。首先根据影像间的几何关系进行影像粗纠正,消除影像间旋转和分辨率差异;然后基于主方向改进的SIFT特征提取方法提取SIFT特征并利用其结构性信息引入结构相似性指数(SSIM)作为相似性测度获得初始匹配,经过视差空间和角度特征空间聚类优化得到稳定同名匹配;最后由随机抽样一致性算法(RANSAC)根据透视变换模型精化匹配结果获取变换模型参数。整个配准过程自动完成。本方法适用于差异较大的SAR影像与光学影像之间配准。 An automatic registration algorithm for SAR and optical images based on geometry constraint and improved SIFT isbroposed. Firstly a rough correction of the rotation and scale differences depending on the geometry constraint is applied. Then the SIFT features extracted by the dominant direction improved SIFT from two images are matched by SSIM as the similar measure according to the structure information of the SIFT feature. And then, parallax and angle restrictions are introduced to improve the matching performance by clustering analysis in the angle and parallax domains. Finally, the perspective transform parameters for the registration are obtained by RANSAC algorithm with removing the false matches simultaneously. The whole process is done automatically. The proposed algorithm is effective in the registration of SAR and optical images with large differences.
出处 《测绘学报》 EI CSCD 北大核心 2012年第4期570-576,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家863计划(2007AA120203) 国家973计划(2011CB707103) 国家自然科学基金(40930532)
关键词 SAR影像 光学影像 几何约束 尺度不变特征 影像自动配准 结构相似性指数 SAR image optical image 9eometry constraint scale mvariant feature transform(SLFT) automaticimage registration structure similarity(SSLM)
  • 相关文献

参考文献16

  • 1陈富龙,张红,王超.基于跨接约束的高分辨率SAR影像与光学影像配准[J].遥感技术与应用,2006,21(3):249-252. 被引量:1
  • 2李雨谦,皮亦鸣,王金峰.基于水平集的SAR图像与光学图像的配准[J].测绘学报,2010,39(3):276-282. 被引量:9
  • 3LI H, MANJUNATH B S, MITRA S K. A Contour based Approach to Multisensor Image Registration[J]. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 4JIA W J,ZHANG J X ,YANG J H. Automatic Registration of SAR and Optics Image Based on Multi features on Suburban Areas[C] // 2009 Joint Shanghai: IEEE, 2009.
  • 5SHU I. X, TAN T J. SAR and Spot Image Registration Based on Mutual Information with Contrast Measure[C]// 2007 IEEE International Conference on Image Processing: 5. San Antonio: IEEE, 2007: 429-432.
  • 6WANG F, VEMURI B. Non-rigid Multi-modal Image Regis- tration Using Cross-cumulative Residual Entropy[J]. Interna- tional Journal of Computer Vision, 2007, 74(2) : 201-215.
  • 7LOWE D G. Distinctive Image Features from Scale Invariant Key Points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8杨雪梅,龚俊斌,王鹏,田金文.基于改进SIFT的SAR图像与可见光图像配准[J].航天控制,2010,28(6):13-17. 被引量:8
  • 9龚俊斌,张大志,杨雪梅,田金文.抗旋转和缩放的SAR与可见光图像自动配准算法[J].宇航学报,2011,32(6):1350-1358. 被引量:5
  • 10WANG Z, CONRAD B A, RAHIM S H. Image Quality Assessment : From Error Visibility to Structural Similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

二级参考文献54

共引文献53

同被引文献273

引证文献30

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部