期刊文献+

基于小波包多尺度信息熵的鱼类识别方法 被引量:1

A Method of Fish Identification Based on Wavelet Packet Multi-scale Information Entropy
下载PDF
导出
摘要 提出一种基于小波包多尺度信息熵的鱼类识别方法。该方法首先对鱼体的回波包络信号进行小波包分解,得到分布在不同频段内的分解信号,并提取各个频带内信号的信息熵作为识别特征量。对三种常见的不同形状的鱼类进行了水池试验,提取多尺度信息熵,并使用BP神经网络分类器成功进行了分类。结果表明:利用小波包多尺度信息熵作为特征量,可对不同形状的鱼类进行识别,且具有较高的识别率。 A method of fish identification based on wavelet packet multi -scale information entropy is proposed in this essay. Firstly, wavelet packet decomposition is done with the echo envelop signal of the fish, and the decomposed signals in different frequency bands are gotten. Then the information entropy of the signal in each frequency band is extracted as the identification characteristic feature. The pool experiments has been done with three kinds of common fish with different shapes, the multi - scale information entropy has been extracted, and the classification done by the BP neural network classifier is successful. The result reveals that the method of using wavelet packet multi - scale information entropy as the identification characteristic feature can identify fish of different shaps with high recognition properties.
出处 《网络新媒体技术》 2012年第4期47-52,共6页 Network New Media Technology
关键词 小波包 信息熵 特征提取 鱼类识别 wavelet packet, information entropy, feature extraction, fish identification
  • 相关文献

参考文献16

  • 1ROSE G A,LEGGETT W C. Hydroacoustic signal classification of fish schools by species[J].Canadian Journal of Fisheries and Aquatic Sciences,1988,(04):597-604.
  • 2ZAKHARIA M E,MAGAND F,HETROIT F. Wideband sounder for fish species identification at sea[J].Ices Journal of Marine Science,1996,(06):203-208.
  • 3SIMMONDS J E,ARMSTRONG F,COPLAND P J. Species identification using wideband backscatter with neural network and discriminant analysis[J].Ices Journal of Marine Science,1996,(02):189-195.
  • 4HORNE J K. Acoustic approaches to remote species identification:a review[J].Fisheries Oceanography,2000,(04):356-371.
  • 5REEDER D B,JECH J M,STANTON T K. Broadband acoustic backscatter and high-resolution morphology of fish:measurement and modeling[J].Journal of The Acoustical Society of America,2004,(02):747-761.
  • 6KULINCHENKO A B,SIMPSON P K,DENNY G F. Tethered Fish Data Collection and Species Classification:Prince William Sound Bottomfish[A].2004.1439-1443.
  • 7BRUNDAGE H M Ⅲ,JUNG J. Experiments with Broadband Sonar for the Detection and Identification of Endangered Shortnose Sturgeon[J].Marine Technology Society Journal,2009,(03):78-82.
  • 8SUNARDI,DIN J,YUDHANA A. Target Strength for Fish Identification Using Echo Sounder[J].Applied Physics Research,2009,(02):92-101.
  • 9ROGERS E O,FLEISCHER G W,DENNY G F. Broadband Fish Identification of Laurentian Great Lakes Fishes[A].2004.1430-1434.
  • 10HORNE J K,CLAY C S. Sonar systems and aquatic organisms:matching equipment and model parameters[J].Canadian Journal of Fisheries and Aquatic Sciences,1998,(05):1296-1306.

二级参考文献4

共引文献14

同被引文献30

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部