摘要
中立型泛函微分方程的振动性在理论和应用中有着重要意义.研究了一类具有正负系数的二阶非线性中立型时滞泛函微分方程的振动性,利用Banach空间的不动点原理,通过引入参数函数并结合一些分析技巧,获得了该类方程存在非振动解的新的准则,并得到了该类方程振动的判别准则,这些准则改善了对方程的条件限制,所得结论推广并改进了现有文献中的一系列结果.
The oscillation of neutral functional differential equations has important implications theoretically and practically. The oscillation of a class of second order nonlinear neutral delay functional differential equation with positive and negative coefficients was discussed. By using the fixed point theorem in Banach space, and by introducing parameter function and certain analytic techniques, some new non-oscillation criteria for the equation were obtained. Some sufficient conditions for oscillation of the equation were proposed. These criteria can improve the restriction of the conditions for the equation. Some existed results have been further improved and extended.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2012年第4期363-368,共6页
Journal of North University of China(Natural Science Edition)
基金
湖南省教育厅科研基金重点资助项目(09A082)
关键词
正负系数
中立型泛函微分方程
非线性
振动和非振动
positive and negative coefficient
neutral functional differential equation
nonlinear
oscillation and nonoscillation