期刊文献+

基于小波变换和神经网络模型的数字调制识别方法 被引量:8

SCHEME OF DIGITAL MODULATION RECOGNITION BASED ON WAVELET TRANSFORM AND NEURAL NETWORKS
下载PDF
导出
摘要 由于小波变换对瞬态信息具有较强的检测能力,数字调制信号在间断点呈现不同的瞬态信息。使用提取小波变换后包络方差与均值平方之比的特征参数,来实现3种信号(MFSK、MPSK和MQAM)的类间识别。然后提取经小波变换后的信号幅度层数N1,对MFSK进行类内识别,提取经归一化后的信号再经过小波变换后的尖峰数N2,对MPSK进行类内识别。最后利用人工神经网络作为分类器,仿真结果表明在低信噪比下具有良好的正确识别率。 Due to the strong detection capability of wavelet transform (WT) on transient information, digitally modulated signals present different transient information on discontinuity points. First, the characteristic parameter of the ratio of envelope variance to mean square after WT is extracted to realise inter-category recognition of 3 signals ( MFSK, MPSK and MQAM). Then, through the extraction of signal amplitude layer N1, the intra-class recognition of MFSK is achieved. Thirdly, the peak number N2, which is attained from the normalised signals undergoing WT again, is extracted for intra-class recognition of MPSK. Lastly, the artificial neural network is employed as the classifier. Simulation results demonstrate that this scheme has good accurate recognition rate in the condition of low signal-to-noise ratio.
作者 薛伟 钱平
出处 《计算机应用与软件》 CSCD 北大核心 2012年第8期210-213,共4页 Computer Applications and Software
关键词 调制识别 小波变换 人工神经网络 Modulation recognition Wavelet transform Artificial neural network
  • 相关文献

参考文献7

  • 1薛磊,刘小秋.基于小波变换的数字通信信号识别[J].电讯技术,2006,46(3):52-56. 被引量:6
  • 2Nouha Alyaoui, Helim Ben Hnia. The modulation recognition approa- ches for software radio[J]. 2007,12 ( 3 ) : 145 - 152.
  • 3Nandi A K,Azzouz E E. Automatic identification of digital modulation types[ J]. Signal Processing, 1995 (47) :55 - 69.
  • 4陈卫东,杨绍全.利用累量不变量对MPSK信号分类[J].西安电子科技大学学报,2002,29(2):229-232. 被引量:33
  • 5George Hatzichristos, Monique P Fargues. A hierarchical to the classifi- cation of digital modulation types in multipath environment [ C ]//Con- ference record of the thirty-fifth asilomar conference on signals, system and computer,2001,2 : 1494 - 1498.
  • 6Ho C K. Identification of digital modulation types using the wavelet transform [ C ]//Milcom 99, Atlantic City. N J, 1999:427 - 431.
  • 7张得丰.MATLAB神经网络仿真与应用[M].北京:电子工业出版社.2009:240-258.

二级参考文献7

  • 1苗建苏,傅丰林.RBF网络在通信信号自动识别中的应用[J].西安电子科技大学学报,1996,23(1):112-120. 被引量:9
  • 2Nandi A K,Azzouz E E.Modulation recognition using artificial neural networks[J].Signal Processing,1997,56:165-175.
  • 3Swami A,Sadler B M.Hierarchical digital modulation classification using cumulates[J].IEEE Trans Comm.,2000,48(3):416-429.
  • 4Helmut Ketterer.Classification of modulation modes using time-frequency methods[C]//.MILCOM 1999Conf.,1999:2471-2474.
  • 5Ho K C,Prokopiw W,Chan Y T.Modulation identification of digital signals by wavelet transform[J].IEE Proceedings,Radar,Sonar and Navigation,2000,147(4):169-176.
  • 6Ho K C,Hong L.Identification of digital modulation types using the wavelet transform[C]//.MILCOM 1999Conf,1999:427-432.
  • 7纪勇,徐佩霞.基于小波变换的数字信号符号率估计[J].电路与系统学报,2003,8(1):12-15. 被引量:37

共引文献39

同被引文献65

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部