期刊文献+

电磁超声检测信号的小波自适应阈值降噪研究 被引量:5

Study on Wavelet Adaptive Threshold De-noising for Electromagnetic Acoustic Detection Signals
下载PDF
导出
摘要 针对电磁超声检测信号中通常混有大量噪声干扰,使用小波软硬阈值降噪后信号存在震荡失真、细节丢失等问题,构造了一种新的自适应阈值函数。该自适应阈值函数处处连续且高阶可微。试验结果表明,对电磁超声检测信号进行小波自适应阈值处理,不但可以保护信号的细微特征不被消除,防止信号震荡,增强光滑性;而且还能减小均方误差和失真,提高信噪比,从而提升电磁超声检测的可靠性和准确性。 Usually, there are a large amount of noise interference existing in the detection signals of electromagnetic acoustic { EMA ) , the problems, e.g. oscillation distortion, detail loss, etc. , may exist in the signals that de-noised by wavelet soft-hard threshold. In order to solve these problems, a new self-adaptive threshold function is established. This function is continuous everywhere and also higher-order differentiable. The experimental results show that the EMA detection signals processed by wavelet self-adaptive threshold, the detail features are not removed, and the oscillation of signals is avoided, the smoothness of signals is enhanced, the means square error and distortion are decreased while the signal noise ratio is increased, thus the reliability and correctness of EMA detection are elevated.
出处 《自动化仪表》 CAS 北大核心 2012年第8期9-11,17,共4页 Process Automation Instrumentation
关键词 电磁超声 小波降噪 自适应 阈值函数 均方误差(MSE) 信噪比(SNR) Electromagnetic acoustic Wavelet de-noising Self-adaptive Threshold function Mean square error ( MSE ) Signal to noise ratio(SNR)
  • 相关文献

参考文献9

二级参考文献51

  • 1夏仁波,刘伟军,王华兵.特征保持的散乱点集光顺算法[J].仪器仪表学报,2006,27(z1):7-9. 被引量:2
  • 2JiZhong JinTao QinShuren.SIGNAL FEATURE EXTRACTION BASED UPON INDEPENDENT COMPONENT ANALYSIS AND WAVELET TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(1):123-126. 被引量:7
  • 3彭志科,卢文秀,褚福磊.新的基于小波变换的振动信号消噪方法[J].机械工程学报,2006,42(4):18-22. 被引量:35
  • 4张贤达 保铮.非平稳信号分析与处理[M].国防工业出版社,1999,7.324-352.
  • 5TAUBIN G. A signal processing approach to fair surface design[C]//Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, August 6-11,1995, Los Angeles, CA, USA. NY: ACM Press, 1995: 351-358.
  • 6DONOHO D L, JOHNSTONE I, KERGYACHARIAN G, et al. Density estimation by wavelet thresholding[J]. Annals of Statistics, 1996, 24(2): 508-538.
  • 7MELACHLAN G, PEEL D. Finite mixture models[M]. New York: Wiley & Sons, 2000.
  • 8DEMPSTER A, LAIRD N, RUBIN D. Maximum likehood estimation from incomplete data via the EM algorithm[J]. J.Royal Statistical Sol.B, 1977, 39(1): 1-38.
  • 9MIHCAK M, KOZINTSEV I, RAMCHANDRAN K, et al. Lowcomplexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 10CHANG S G, YU Bin, VETTERLI M. Spatially adaptive thresholding with context modeling for image denosing[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1 522-1 531.

共引文献338

同被引文献35

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部