期刊文献+

米曲霉6-磷酸葡萄糖脱氢酶基因gsdA的克隆及生物信息学分析 被引量:3

Cloning and Bioinformatic Analysis of Glucose-6-phosphate 1-dehydrogenase Gene(gsdA) from Aspergillus oryzae
下载PDF
导出
摘要 6-磷酸葡萄糖脱氢酶催化6-磷酸葡萄糖生成6-磷酸葡萄糖酸,并生成NADPH,是微生物胞内磷酸戊糖途径(PPP)的关键酶。本研究以食品安全菌米曲霉CICC2012为材料,克隆获得6-磷酸葡萄糖脱氢酶基因(GenBank登录号:JN123468)。序列分析表明,该酶是由222个氨基酸组成的亲水性蛋白;128~134位氨基酸序列DHYLGKE为活性区域;170~176位氨基酸序列GTEGRGG可能为辅因子结合位点。进化树分析表明,米曲霉6-磷酸葡萄糖脱氢酶同其他丝状真菌及酵母的G6PDH较相似。 Glucose-6-phosphate 1-dehydrogenase(G6PDH) is one of the key enzymes in pentose phosphate pathway(PPP). Here, the gene encoding G6PDH is cloned from Aspergillus oryzae CICC2012. This gene was sequenced and submitted to GenBank(accession number: JN123468). The sequence was analyzed bioinformatically. The results show that G6PDH from A. oryzae is a hydrophilic enzyme consisting of 222 amino acids. The sequence from 128 to 134(DHYLGKE) is the active site, and the sequences from 170 to 176(GTEGRGG) is the possible site of coenzyme binding. The phylogenetic tree shows that G6PDH of A. oryzae is similar to other filamentous fungi and the yeast one, while distinguished from the bacterial type, the plant one, and the human one.
出处 《亚热带植物科学》 2012年第3期11-15,共5页 Subtropical Plant Science
基金 教育部留学回国人员科研启动基金(2010) 福建省高等学校新世纪优秀人才支持计划(07FJRCO3) 中央高校基本科研业务费专项资金(JB-ZR1112)资助
关键词 6-磷酸葡萄糖脱氢酶 克隆 生物信息学分析 glucose-6-phosphate 1-dehydrogenase (G6PDH) cloning bioinformatic analysis
  • 相关文献

参考文献14

  • 1Van A F, Cardinaels C, Clijsters H. Induction of enzyme capacity in plants as a result of heavy metal toxicity: Dose-response relations in Phaseolus vulgaris treated with zinc and cadmium[J]. Environmental Pollution, 1988,52(2): 103-115.
  • 2Nemoto Y, Sasakuma T. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat Triticum aestivum[J]. Plant Science, 2000,158(1): 53-60.
  • 3Huang J, Zhang H, Wang J, et al. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress[J]. Molecular Biology Reports, 2003,30(4): 223-227.
  • 4Sauer U, Canonaco F, Heri S, et aL The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli[J]. Journal of Biological Chemistry, 2004,279(8): 6 613-6 619.
  • 5Hou J, Vemuri G N, Bao X, et al. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2009,82(5): 909-919.
  • 6Lee W H, Park J B, Park K, et al. Enhanced production of e-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene[J]. Applied Microbiology and Biotechnology, 2007,76(2): 329-338.
  • 7Georgi T, Rittmann D, Wendisch V E Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-l, 6-bisphosphatase[J]. Metabolic Engineering, 2005,7(4): 291-301.
  • 8Kwon D H, Kim M D, Lee T H, et al. Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae[J]. Journal of Molecular Catalysis B: Enzymatic, 2006,43(1-4): 86-89.
  • 9Lee W H, Chin Y W, Han N S, et al. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli[J]. Applied Microbiology and Biotechnology, 2011,91(4): 967-976.
  • 10Broek P, Goosen T, Wennekes B, et al. Isolation and characterization of the glucose-6-phosphate dehydrogenase encoding gene (gsdA) from Aspergillus niger[J]. Molecular and General Genetics MGC, 1995,247(2): 229-239.

二级参考文献45

  • 1叶建仁,黄素红,李传道,程淑婉.磷酸葡萄糖脱氢酶和苯丙氨酸解氨酶与抗松针褐斑病的关系[J].林业科学,1994,30(5):430-436. 被引量:16
  • 2沈同 王镜岩.生物化学(第二版)[M].高等教育出版社,1991,6..
  • 3韩建国 浦心春 等.高羊茅种子老化过程中酶活性的变化[J].草地学报,1998,6(2):84-89.
  • 4Nemoto Y, Sasakuma T, 2000. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat. Plant Sci, 158:53-60.
  • 5Phillip M D, Michael J E, 1999. Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J Exp Bot, 50:1653-1661.
  • 6Redinbaugh M G, Campbell W H, 1998. Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci, 134:129~140.
  • 7Schaewen A, Langenkamoer G, Graeve K, 1995. Molecular characterization of the plastidic glucose-6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart. Plant Physiol, 109:1327-1335.
  • 8Schnarrenberger C, Flechner A, Martin W, 1995. Enzymatic evidence for a complete oxidadtive pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol,108:609~614.
  • 9Sindelar L, Sindelarova M, Burketova L, 1999. Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplasts. Plant Physiol Bioch, 37:195~201.
  • 10Stitt M, ap Rees T, 1980. Estimation of the activity of the oxidative pentose phosphate pathway in pea chloroplasts.Phytochemistry, 19:1583-1585.

共引文献44

同被引文献49

  • 1郑集,陈钧辉.普通生物化学[M].第3版.北京:高等教育出版社,2007:377-378.
  • 2PAPAGIANNI M,AVRAMIDIS N.Lactococcus lactis as a cell factory:a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation[J].Enzyme and microbial technology,2011,49(2):197-202.
  • 3PAPAGIANNI M,AVRAMIDIS N.Engineering the central pathways in Lactococcus lactis:functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions[J].Enzyme and microbial technology,2012,51(3):125-130.
  • 4QIN Y,LIU L M,LI C H,et al.Accelerating glycolytic flux of Torulopsis glabrata CCTCC M202019 at high oxidoreduction potential created using potassium ferricyanide[J].Biotechnol Prog,2010,26(6):1551-1557.
  • 5JONATHAN W,CHIN P C C.Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations[J].Biotechnology Progress,2011,27(2):333-341.
  • 6SIEDLER S,BRINGER S,BLANK L M,et al.Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport[J].Appl Microbiol Biotechnol,2012,93(4):1459-1467.
  • 7SIEDLER S,BRINGER S,BOTT M.Increased NADPH availability in Escherichia coli:improvement of the product per glucose ratio in reductive whole-cell biotransformation[J].Appl Microbiol Biotechnol,2011,92(5):929-937.
  • 8SIEDLER S,LINDNER S N,BRINGER S,et al.Reductive whole-cell biotransformation with Corynebacterium glutamicum:improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants[J].Appl Microbiol Biotechnol,2013,97(1):143-152.
  • 9BAART G J,LANGENHOF M,VAN D W B,et al.Expression of phosphofructokinase in Neisseria meningitidis[J].Microbiology,2010,156(2):530-542.
  • 10YAMAMOTO S,GUNJI W,SUZUKI H,et al.Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions[J].Appl Environ Microbiol,2012,78(12):4447-4457.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部