期刊文献+

Mn^(2+)-Fe^(2+)复合胁迫对胭脂草逆境生理指标的影响 被引量:1

Effects of Mn^(2+)-Fe^(2+) Combined Stress on Physiological Indexes of Rivina humilis
下载PDF
导出
摘要 以胭脂草(Rivina humilis)为材料,采用溶液培养法,研究系列浓度的锰铁复合胁迫对其若干逆境生理指标的影响。结果表明,当锰铁复合胁迫浓度为6 mmol/L Mn2++0.5 mmol/L Fe2+时,叶绿素含量和可溶性糖含量均极显著高于对照,并达最大值;与此同时,MDA含量极显著降低,并达呈最小值。该组合处理能维持胭脂草较高水平的保护酶(SOD、POD、CAT)活性。由此说明,适宜浓度的锰铁复合处理,能在一定程度上缓解单一金属的毒害作用,提高胭脂草对锰铁复合胁迫环境的耐受性。 The effects of Mn^2+-Fe^2+combined stress on physiological indexes of Rivina humilis was studied by the method of nutrient solution culture. The results showed that both the chlorophyll content and the soluble sugar content were significantly higher than those of the control and reached the maximum when R. humilis were stressed by 6 mmol/L Mn^2+ and 0.5 mmol/L Fe^2+. At the same time, the MDA content was extremely significantly lower than that of the control and got to the minimum. Additionally, the combined treatment of Mn^2+-Fe^2+ also improved the activities of SOD, POD and CAT. In a word, the suitable combined concentrations of Mn^2+ and Fe^2+could alleviate the toxicity of single metal to some extent, and enhanced the tolerance of R. humilis to the ferromanganese stress.
出处 《亚热带植物科学》 2012年第3期33-37,共5页 Subtropical Plant Science
基金 福建省自然科学基金(2011J01150) 福建省教育厅项目(JK.2009008 JB11014)
关键词 胭脂草 Mn2+-Fe2+复合胁迫 生理指标 Rivina humilis Mn^2+-Fe^2+combined stress physiological indexes
  • 相关文献

参考文献21

二级参考文献197

共引文献469

同被引文献32

  • 1张西科,张福锁,毛达如.根表铁氧化物胶膜对水稻吸收Zn的影响[J].应用生态学报,1996,7(3):262-266. 被引量:27
  • 2王焕校.污染生态学[M].北京:高等教育出版社,2002.372-389.
  • 3Zhang X, Lin A J, Zhao F J, et al. Arsenic accumulation by the aquatic fern Azolla:Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A.liculoides[J]. Environmental Pollution, 2008, 156( 3 ) : 1149-1155.
  • 4Xue P Y, Yan C Z. Arsenic accumulation and translocation in the sub- merged macrophyte Hydrilla verticillata ( L.f. )Royle [J]. Chenwsphere, 2011, 85 : 1176-1181.
  • 5Rahman M A, Hasegawa H, Ueda K, et al. Arsenic accumulation in duckweed(Spirodela polyrhiza L. ):A good option for phytoremediation [J]. Chemosphere, 2007, 69:493-499.
  • 6Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contami- nant:Mechanisms of plant uptake metabolism and mitigation strategies [J]. A nnua! Review of Plant Biology, 2010, 61:535-559.
  • 7Liu W J, Zhu Y G, Hu Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants( Oryza Sativa L. )[J]. Environmental Science and Technology, 2006, 40( 18 ) :5730-5736.
  • 8Rahman M A, Hasegawa H, Ueda K, et al. Arsenic uptake by aquatic macrophyte Spirodelapolyrhiza L. :Interactions with phosphate and iron [J]. Journal of Hazardous Materials, 2008, 160:356-361.
  • 9Blute N K, Brabander D J, Hemond H F, et al. Arsenic sequestration by ferric iron plaque on Cattail roots[J]. Environmental Science and Tech- nology, 2004, 38 ( 22 ) : 6074-6077.
  • 10Wang T G, Peverly J H. Oxidation states and fractionation of plaque iron on roots of common reeds[J]. Soil Science Society of America, 1996, 60: 323-329.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部