期刊文献+

R417A和R22在光管和强化管外的凝结换热特性比较 被引量:6

Characteristic Comparison of Condensation Heat Transfers Outside the Smooth and Enhanced Tubes when Using R417A and R22
下载PDF
导出
摘要 对氟利昂R417A与R22在水平单管外的凝结换热性能进行了试验研究,试验工况温度40℃,试验管为光管和两根双侧强化管(其中C32为肋密度50fpi二维强化管,C36为相同肋密度三维强化管)。目的是获得R417A在光管、二维、三维强化管外的凝结换热特性,进而研究R417A替代R22的可行性。通过Wilson热阻分离试验获得管内对流换热系数,进而从总传热热阻中分离出管外凝结换热热阻。结果显示,光管管外R22凝结Nusselt理论值与实验值偏差在±5%以内。R417A在光管外凝结换热系数约为R22的65%,而在C32、C36管外凝结换热系数分别占R22的50.8%~60.0%,31.7%~42.7%。R22在三维强化管C36外凝结换热系数是相同肋密度下二维强化管C32的1.27~1.44倍,而R417A在C32管外凝结换热系数略高于C36管,表明三维强化表面未必能进一步强化非共沸工质R417A的凝结换热。 An experimental study on R417A and R22 film condensation on single horizontal tubes (one smooth tube and two doubly enhanced ones) was conducted at the refrigerant saturation temperature of 40℃. The object of study was to reveal the condensation heat transfer on the outsides of smooth tube, two dimensional enhanced tube and three dimensional enhanced tube, respectively, and the possibility of using R417A as substitution for R22. A modified Wilson plot was used to obtain the water-side and vapor-side heat transfer coefficients. The results show that the predicted condensation heat transfer coefficients of R22 on smooth tube calculated by Nusselt theory agree well with the experimental data within ± 5%. Condensation heat transfer coefficients of R417A are about 65% of those of R22 for smooth tube. Meanwhile, the condensation heat transfer coefficients of R417A are 50.8%-60.0% and 31.7%-42.7% of those of R22 on the outsides of the tubes C32 and C36, respectively. For R22, the condensation heat transfer coefficients on C36 are 1.27-1.44 times higher than those on C32 with the same fin density. For R417A, the condensation heat transfer coefficients on C32 are slightly higher than those on C36. This indicate that, using three dimensional enhanced tube can not further enhance the condensation heat transfer of using two dimension ones for non-azeotropic mixtures of R417A.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2012年第4期587-592,共6页 Journal of Chemical Engineering of Chinese Universities
基金 河南省科技攻关项目(112102310673) 河南省高等学校青年骨干教师资助计划(2011GGJS-114)
关键词 强化管 非共沸工质 R417A 凝结换热 enhanced tubes non-azeotropic mixtures refrigerant 417A condensation heat transfer
  • 相关文献

参考文献11

  • 1Park Ki-Jung,Jung Dongsoo.Condensation heat transfer coefficient of HCFC22,R410A,R407C and HFC134a at varioustemperatures on a plain horizontal tube[J].Journal Mechanical Science and Technology,2007,21:804-813.
  • 2Jung Dongsoo,Chae Soonam,Bae Dongsoo,et al.Condensation heat transfer coefficient of binary HFC mixtures on low-fin tubesand Turbo-C tubes[J].International Journal of Refrigeration,2005,28:212-217.
  • 3Park Ki-Jung,Jung Dongsoo.External condensation heat transfer coefficients of R22 alternative refrigerants on enhanced tubes atthree saturation temperatures[J].Journal of Mechanical Engineering Science,2008,222(C):987-994.
  • 4成昌锐,王秋旺,刘星,陶文铨.R407C在水平单管外凝结换热的实验研究[J].工程热物理学报,2001,22(S1):50-52. 被引量:10
  • 5贾传林,欧阳新萍,陈建红,洪思雯.R22和R417A在水平强化管外的凝结换热实验研究[J].制冷学报,2009,30(4):31-35. 被引量:11
  • 6Aprea C,Renno C.Experimental comparison of R22 with R417A performance in a vapour compression refrigeration plant subjectedto a cold store[J].Energy Conversion and Management,2004,11(45):1807-1819.
  • 7Jose Fernandez-Seara,Francisco J Uhia,Ruben Diz,et al.Vapour condensation of R22 retrofit substitutes R417A,R422A andR422D on CuNi turbo C tubes[J].International Journal of Refrigeration,2010,33:148-157.
  • 8YANG Shi-ming(杨世铭),TAO Wen-quan(陶文铨).Heat Transfer[M].Beijing(北京):Higher Education Press(高教出版社),2006:505-506.
  • 9张定才,刘启斌,陶文铨,何雅玲.R22在水平双侧强化管外的凝结换热[J].化工学报,2005,56(10):1865-1868. 被引量:17
  • 10Cheng B,Tao W Q.Experimental study of R152a film condensation on single horizontal smooth tube and enhanced tubes[J].ASME J of Heat Transfer,1994,116(2):266-270.

二级参考文献27

  • 1马学虎,李香琴,周兴东,陈嘉宾.基于人工神经网络的滴膜共存冷凝传热模型的研究[J].工程热物理学报,2004,25(S1):95-98. 被引量:12
  • 2贾力,彭晓峰,孙金栋,陈铁兵.烟道气的冷凝传热与脱硫的实验研究[J].应用基础与工程科学学报,2000,8(4):387-393. 被引量:9
  • 3程伟良,韩晓娟,孙宏玉.质量传递过程中的场协同作用[J].中国电机工程学报,2005,25(13):105-108. 被引量:15
  • 4Kumar R, Varrna H K, Agraval K N A Comprehensive Study of modified wilson plot technique to determine the heat transfer coefficient during condensation of steam and R-134a over single horizontal plain and fanned tubes [J]. Heat Transfer Engineering, 2001, 22: 3-12.
  • 5Huber J B, Rewerts L E, Pate M B. Shell-Side condensation heat transfer of R-134a-Part II: Enhanced tube performance[J]. ASHRAE Transactions, 1994,100 (2).
  • 6Karkhu V A, Borovkov V P. Film condensation of vapor at finely-finned horizontal tubes. Heat Transfer Soviet Research,1971,3(2):183-191
  • 7Rudy T M, Webb R L. An analytical model to predict condensate retention on horizontal integral-fin tubes. ASME J. of Heat Transfer,1985,107(2) : 361-368
  • 8Wanniarachchi A S, Marto P J, Rose J W. Film condensation of steam on horizontal finned tubes: effect of fin spacing. ASME J. of Heat Transfer,1986,108(4):960-966
  • 9Sarma P K, Vijayalakshmi B, Mayinger F, Kakac S.Turbulent film condensation on a horizontal tube with external flow of pure vapors. Int. J. of Heat Mass Transfer,1998,41(3):537-545
  • 10Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chemical Engineering,1976,16(2):359-368

共引文献34

同被引文献33

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部