期刊文献+

苯胺-邻硝基苯胺共聚物——高比容量锂二次电池新型正极材料 被引量:1

Poly(Aniline/o-Nitroaniline):A High Capacity Cathode Material for Lithium Ion Batteries
下载PDF
导出
摘要 聚苯胺作为锂离子电池典型的有机正极材料,合成简单、资源丰富,但其电化学比容量与循环寿命始终难以满足实用要求.作者采用化学氧化聚合法合成了苯胺-邻硝基苯胺共聚物(Poly(Aniline/o-Nitroanil-ine,P(AN-oNA)),通过在聚苯胺主链引入强拉电子基团——硝基苯胺,增大共聚物的电子共轭体系,改善共聚物链段的稳定性,利用硝基苯胺基团的电化学可逆性提高共聚物的电化学活性.结果表明,P(AN-oNA)的初始充放电比容量高达186 mAh·g-1,比聚苯胺提高近37%,60周循环仍能维持168 mAh·g-1.此外,P(AN-oNA)电极的充放电电位平阶十分接近,电极的极化明显降低,电子转移反应速率加快.这种新型共聚物结构与性能对于发展有机正极材料具有重要的参考意义. Polyaniline can be used as a high capacity cathode material due to the advantages of material abun-dance and synthetic simplicity. However, its practical application in battery has been hindered by poor electro-chemical utilization and cycling instability. To solve these problems, we synthesized the poly ( aniline/o-Nitro-aniline) (P(AN-oNA) ) by introducing the electron-drawing group-nitroaniline onto the polyaniline chains, so as to enhance electrochemical utilization and stability of the polyaniline derivative. The as-prepared Li/P( AN- oNA) copolymer shows a greatly enhanced discharge capacities of 186 mAh·g^-1 at initial cycles, about 37 % higher than its parent PAN, and remains 168 mAh·g^-1 after 60th cycle. Also, the Li/P(AN-oNA) copolymer exhibits ,Jery similar charge and discharge profiles, demonstrating a significantly decreased polarization. This structural modification of PAN and the resulting improved performances of the Li/P (AN-oNA) copolymer suggest an effective way to develop high capacity organic cathode materials for Li-ion batteries.
出处 《电化学》 CAS CSCD 北大核心 2012年第4期310-313,共4页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.2009CB2201003)资助
关键词 锂离子电池 正极材料 苯胺-邻硝基苯胺共聚物 lithium-ion batteries cathode material poly (Aniline/o-Nitroaniline) copolymer
  • 相关文献

参考文献11

  • 1Novák P, Müller K, Haas O, et al. Electrochemically active polymers for rechargeable batteries [J], Chemical Reviews, 1997, 97(1): 207-281.
  • 2He B L, Bong B, Wang W, et al. Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries [J], Materials chemistry and Physics, 2009, 114(1): 371-375.
  • 3Ryu K S, Kim K M, Chang S H, et al. The polyaniline electrode doped with Li salt and protonic acid in lithium secondary battery [J], Bulletin of the Korean Chemical Society. 2002, 23(8): 1144-1148.
  • 4Lee M H, Luo Y C, Do J S. Using PANI-PPDA/Au composite films as cathode of lithium secondary battery [J], Journal of Power Sources, 2005, 146(S1): 340-344.
  • 5Nakajima T, Kawagoe T. Quinone diimine part of polyaniline is electrochemically inactive in nonaqueous electrolytes [J], Macromolecules, 1990, 23(23): 4925-4928.
  • 6Zhang J, Shan D, Mu S. A rechargeable Zn-poly (aniline-co-m- aminophenol) battery [J]. Journal of Power Sources, 2006, 161(1): 685-689.
  • 7Yeh S J, Tsai C Y, Cheng S H, et al. Electrochemical characterization of small organic hole-transport molecules based on the triphenylamine unit [J]. Electrochemistry Communications, 2003, 5(5): 373-377.
  • 8Tobishima S, Yamaki J, Yamaji A. Cathode characteristics of organic electron acceptors for lithium batteries [J]. Journal of The Electrochemical Society, 1984, 131(1): 57-63.
  • 9Huang J X, Kaner R B. A general chemical route to polyaniline nanofibers [J]. Journal of the American Chemical Society, 2004, 126(3): 851-856.
  • 10周震涛,杨洪业,王克俭,刘芳.聚苯胺掺杂、除掺杂和再掺杂与结构性能的研究[J].华南理工大学学报(自然科学版),1995,23(10):96-101. 被引量:10

二级参考文献6

共引文献9

同被引文献31

  • 1王晓峰,尤政,阮殿波.聚苯胺在电化学电容器中的应用[J].Chinese Journal of Chemical Physics,2005,18(4):635-640. 被引量:12
  • 2马会茹,官建国,柳娜,卢国军,袁润章.PEG链段对聚乙二醇接枝聚苯胺结构与性能的影响[J].高分子学报,2006,16(1):92-96. 被引量:6
  • 3黄美荣,桂运能,李新贵.聚(N-烷基苯胺)膜的制备技术及性能与应用[J].电子元件与材料,2007,26(6):13-16. 被引量:5
  • 4Singh A K, Joshi L, Gupta B, et al. Electronic properties of soluble functionalized polyaniline ( polyanthranilic acid) -multiwalled carbon nanotube nanocomposites: influence of synthesis methods [ J ]. Synthetic Metals,, 2011,161 (48) : 1-8.
  • 5Abdulla H S, Abbo A I. Optical and electrical properties of thin Films of polyaniline and polypyrrole [ J ]. International Journal of Electrochemical Science,2012,7(106) :66-78.
  • 6Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers : halogen derivatives of polyacetylene [ J ]. Chemical Communications ,1977,7 : 578-580.
  • 7Ghenaatian H R, Mousavi M F, Rahmanifar M S. High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers [ J ]. Electrochimica Acta, 2012,78 ( 2 ) : 12 -22.
  • 8Ko Y G, Kwon W, Kim D M, et al. Programmable nonvolatile electrical memory characteristics of an Ionic conjugated polymer [ J ]. Polymer Chemistry-UK,2012,3( 20 ) :28-33.
  • 9Bhadra S, Singha N K, Khastgir D. Dual functionality of PTSA aselectrolyte and dopant in the electrochemical synthesis of palyaniline, and its effect on electrical properties [ J ]. Polymer International,2007,56 (9) : 19-27.
  • 10Jaymand M. Synthesis and characterization of conductive polyaniline modified polymers via nitroxide mediated radical polymerization [ J ]. Polymer, 2010,34(55) :3-9.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部