期刊文献+

基于小波包分解的意识脑电特征提取 被引量:36

Imaginary EEG feature extraction based on wavelet packet decomposition
下载PDF
导出
摘要 针对2种不同意识任务(想象左手运动和想象右手运动)的脑-机接口(brain-computer interface,BCI)设计,提出了基于小波包分解的特征提取方法。首先深入研究了小波包变换,结合事件相关去同步化(event-related desynchronization,ERD)/事件相关同步化(event-related synchronization,ERS)现象,提出以小波包分解系数来考虑特征,然后对C3、C4导联脑电信号进行小波包分解系数方差和相对能量2种特征的提取,最后采用最简线性分类器进行分类。结果表明,2种特征对应的最大分类正确率均达到了85%,对应时间分别为4.34 s和4.39 s。因此,在保证分类正确率的前提下,所提方法更加简单和有效,为大脑意识任务分类提供了新思路。 Aiming at the design of the brain-computer interface (BCI) for classifying different imagined movements of both left and right hands, a feature extraction method based on wavelet packet decomposition is proposed. Firstly, the wavelet packet transform is studied in depth and an idea of taking wavelet packet coefficients as the features is suggested based on event-related desynchronization/event-related synchronization (ERD/ERS) phenomena. Then, two EEG features of the variances and relative energies of the wavelet packet coefficients are extracted from the EEG signals of channels C3 and C4; and finally, the feature signals are classified using a most simple linear classifier The results show that the maximum classification accuracies of both features reach 85% , and the corresponding times are 4.34 s and 4.39 s, respectively. So, under the precondition of guaranteeing the classification accuracy, the proposed method is more efficient and simpler, which provides a new reference for brain imaginary task classification.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第8期1748-1752,共5页 Chinese Journal of Scientific Instrument
关键词 脑电 脑-机接口 小波包变换 方差 相对能量 electroencephalogram (EEG) brain-computer interface (BCI) wavelet packet transform variance relative energy
  • 相关文献

参考文献19

  • 1WOLPAW J R,BIRBAUMER N,MCFARLAND D J,et al.Brain-computer interface for communication and control[J].Clinical Neurophysiology,2002,113 (6):767-791.
  • 2VAN GERVEN M,FARQUHAR J,SCHAEFER R,et al.The brain-computer interface cycle[J].J.Neural Eng.,2009,6(4):1-10.
  • 3高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 4WOLPAW J R,BIRBAUMER N,HEETDERKS W,et al.Brain-computer interface technology:A review of the first international meeting[J].IEEE Trans.Rehab.Eng.,2000,8(2):164-173.
  • 5VAUGHAN T M.Brain-computer interface technology:A review of the second international meeting[J].IEEE Trans.Neural Sys.Rehab.Eng.,2003,11(2):94-109.
  • 6VAUGHAN T M,WOLPAW J R.The third international meeting on brain-computer interface technology:Making a difference[J].IEEE Trans.Neural Sys.Rehab.Eng.,2006,14 (2):126-127.
  • 7PFURSTCHELLER G,MULLER-PUTZ G R,SCHLOGL A,et al.15 years of research at Graz University of Technology:Current projects[J].IEEE Trans.Neural Sys.Rehab.Eng.,2006,14(2):205-210.
  • 8BURKE D P,KELLY S P,DECHAZAL P,et al.A parametric feature extraction and classification strategy for brain-computer interface[J]..IEEE Trans.Neural Sys.Rehab.Eng.,2005,13(1):12-17.
  • 9刘冲,赵海滨,李春胜,王宏.基于CSP与SVM算法的运动想象脑电信号分类[J].东北大学学报(自然科学版),2010,31(8):1098-1101. 被引量:49
  • 10吴婷,颜国正,杨帮华.基于小波包分解的脑电信号特征提取[J].仪器仪表学报,2007,28(12):2230-2234. 被引量:24

二级参考文献89

共引文献229

同被引文献394

引证文献36

二级引证文献417

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部