期刊文献+

延迟容忍网络中一种基于拥塞程度的端到端确认机制 被引量:1

Congestion level based end-to-end acknowledgement mechanism in delay tolerant networks
下载PDF
导出
摘要 端到端传输的可靠性是传输层的重要问题之一,但是由于网络连接的间歇性,延迟可容忍网络(DTN)往往缺乏稳定的端到端路径,这使得传统的端到端可靠性方法无法直接应用在这类网络之中。分析DTN中端到端可靠性机制的基本原理以及存在的主要问题,提出一种新的基于拥塞程度自适应的端到端确认机制,即APR(Active-Passive Receipt),采用主动反馈与被动反馈相结合的方式,根据网络的拥塞状态自适应地调整确认消息的传输方式,限制网络的总体开销,同时保证较合理的传播延时,以求达到较好的综合性能。模拟结果表明:该方法有效地平衡网络开销和延迟性能,并获得较高的消息到达率。 Transport layer end-to-end reliability is one important issue in delay tolerant networks (DTNs). Because of the intermittent connectivity, DTNs lack stable end-to-end paths. Thus traditional end-to-end reliability approaches cannot work well in DTNs. The principle of end-to-end acknowledgement and the existing main problems in DTNs are analyzed deeply, and a novel congestion level based end-to-end acknowledgement mechanism--active-passive receipt (APR) is proposed, which combines active manner with passive manner in order to limit the total overhead and guarantee a reasonable transmission delay, and ultimately achieve preferable combination property. Simulation results show that our approach effectively balances the network cost and delay, and achieves higher message delivery rate.
作者 安莹 王建新
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2613-2621,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60873265) 国家自然科学基金创新群体科学基金资助项目(70921001) 国家高技术研究发展计划("863"计划)项目(2009AA112205)
关键词 延迟可容忍网络 确认机制 网络拥塞 端到端可靠性 delay tolerant networks (DTN) acknowledgement mechanism congestion end-to-end reliability
  • 相关文献

参考文献23

  • 1Pelusi L, Passarella A, Conti M. Opportunistic networking: Data forwarding in disconnected mobile Ad hoe networks[J]. IEEE Communications Magazine, 2006, 44(11): 134-141.
  • 2Hooke A. The interplanetary intemet[J]. Communications of the ACM, 2001, 44(9): 38-40.
  • 3Hull B, Bychkovsky V, Zhang Y, et al. CarTel: A distributed mobile sensor computing system[C]//Proceedings of the 4th Int'l Conf on Embedded Networked Sensor Systems. Boulder: ACM, 2006: 125-138.
  • 4Pan H, Chaintreau A, Scott J, et al. Pocket switched networks and human mobility in conference environments[C]// Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM, 2005:244-251.
  • 5Juang P, Oki H, Wang Y, et al. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet[C]//Proceedings of the 10th Int'l Conf on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002: 96-107.
  • 6Krotkov E, Blitch J. The defense advanced research projects agency (DARPA) tactical mobile robotics program[J]. The International Journal of Robotics Research, 1999, 18(7): 769-776.
  • 7Pentland A, Fletcher K, Hasson A. Daknet: Rethinking connectivity in developing nations[J]. Computer, 2004, 37(1): 78-83.
  • 8University of South Florida: Center for robot-assisted search and rescue[EB/OL]. [2000-04-17]. http://crasar.csee.usf.edu/.
  • 9Becker V D. Epidemic routing for partially connected Ad hoe networks[R]. Durham, NC: Duke University. Department of Computer Science, 2000: 2-6.
  • 10Small T, Haas Z J. The shared wireless infostation model--A new Ad hoc networking paradigm (or where there is a whale, there is a way)[C]//Proceedings of MobiHoc'03. Annapolis, Maryland: ACM, 2003: 233-244.

二级参考文献67

  • 1Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S. CarTel: A distributed mobile sensor computing system. In: Proc. of the 4th Int'l Conf. on Embedded Networked Sensor Systems. Boulder: ACM, 2006. 125-138.
  • 2Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C. Pocket switched networks and human mobility in conference environments. In: Proc. of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM. 2005. 244-251.
  • 3Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D. Energy-Efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proc. of the 10th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002.96-107. DO1=http://doi.acm.org/10.1145/605397.605408
  • 4Pelusi L, Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. Communications Magazine, 2006,44(11): 134-141.
  • 5Conti M, Giordano S. Multihop ad hoe networking: The reality. Communications Magazine, 2007,45(4):88-95.
  • 6Fall K. A delay-tolerant network architecture for challenged Internets. In: Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM, 2003.27-34.
  • 7Akyildiz IF, Akan B, Chert C, Fang J, Su W. InterPlaNetary Intemet: State-of-the-Art and research challenges. Computer Networks, 2003,43(2):75-112.
  • 8Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-404.
  • 9Grossglauser M, Tse DNC. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. on Networking, 2002, 10(4):477-486.
  • 10Small T, Haas ZJ. The shared wireless infostation model: A new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proc. of the 4th ACM Int'l Symp. on Mobile Ad Hoc Networking. Annapolis: ACM, 2003. 233-244.

共引文献323

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部