期刊文献+

支持向量机平凡解判别与修正的新方法 被引量:1

A new method for discrimination and modification of null solutions in support vector machines
下载PDF
导出
摘要 针对二类分类问题,提出一种新的线性支持向量机(SVM)产生平凡解的判别与修正方法,证明如下SVM平凡解判别定理:SVM最优解是平凡解的充要条件是在样本空间的任意方向上,正负类训练样本的分布满足某种不等式关系,该不等式与正负类训练样本各自的惩罚因子C+、C-有关,与公共的惩罚因子C无关。在以上判别定理的基础上,通过筛选训练样本点及各自的惩罚因子来修正SVM优化求解过程,为有效避免SVM平凡解的产生提供理论依据和技术手段。仿真计算实例表明该方法有效。 For binary classification problems, a new method for discrimination and modification of null solutions in linear support vector machines (SVMs) was proposed. The following theorems for discrimination of null solutions in SVMs were proved: The necessary and sufficient conditions for the optimal solution of SVMs being a null solution are that for a given training set, the distribution of the positive and negative samples must satisfy an inequality which is related to the respective penalty parameters C+, C- of the two classes, and is independent of the shared penalty parameter C. Based on the above results, a modification method for null solutions in SVMs was presented by selecting samples in the training set, and adjusting the values of penalty parameters, which provides theoretical support and technique method for avoiding generating null solutions in SVMs. Computational examples illustrate the effectiveness of the proposed methods.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2648-2654,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60774076 90820302)
关键词 支持向量机 惩罚因子 平凡解 闭凸包 support vector machine penalty parameter null solution convex hull
  • 相关文献

参考文献15

  • 1Cristianini N, Shawf-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge University Press, 2000.
  • 2Burges C J C. A tutorial on support vector machine for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 3Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20: 273-297.
  • 4陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 5Bennett K, Blue J. A support vector machine approach to decision trees[R]. Troy, NY: Rensselaer Polytechnic Institute Math Repot, 1997.
  • 6Frphlich H, Chapelle O, Scholkopf B. Feature selection for support vector machines using genetic algorithm[J]. International Journal on Artificial Intelligence Tools, 2004, 13(4): 791-800.
  • 7Wan V, Renals S. Speaker verification using sequence discriminant support vector machines[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(2): 203-210.
  • 8Sungmoon C, Sang H O, Soo-Young L. Support vector machines with binary tree architecture for multi-class classification[J]. Neural Information Processing-Letters and Reviews, 2004, 2(3): 47-51.
  • 9Howley T, Madden M G. The genetic kernel support vector machine: description and evaluation[J]. Artificial Intelligence Review, 2005, 24(3/4): 379-395.
  • 10陶晓燕,姬红兵,马志强.基于样本分布不平衡的近似支持向量机[J].计算机科学,2007,34(5):174-176. 被引量:10

二级参考文献39

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2陶卿.基于约束区域的神经网络模型及其在优化和联想记忆中的应用[博士学位论文].合肥:中国科学技术大学,1999..
  • 3[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 4[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 5[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 6[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 7[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 8[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 9[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 10[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.

共引文献112

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部