期刊文献+

自动问题求解智能教学系统中语义理解方法综述 被引量:2

A Review of the Method of Semantic Analysis in the Automated Problem Solving of ITS
下载PDF
导出
摘要 文章对近五十年来国内外自动问题求解智能教学系统中自然语言的语义理解方法进行了梳理。对不同时期、不同系统的语义理解方法进行了分析和比较,归纳总结出系统能够解决题目受限的原因,并得出以下结论:问题表征是语义理解的方向,知识库是语义理解的基础,借鉴认知科学的研究成果是语义理解研究的趋势。最后提出了该领域面临的问题和挑战。 This paper reviewed the method of semantic analysis in the automated problem solving of ITS in the recently fifty years. The methods of semantic in the different years are compaRed. The reason that the problems were constrained for solving is concluded. And this paper concludes that the representation is the direction of semantic analysis, the knowledge base is the basic of semantic analysis, and initiating the researched of cognitive psychology is the trend. The problems and challenges are given at last.
出处 《现代教育技术》 CSSCI 2012年第8期104-108,103,共6页 Modern Educational Technology
关键词 智能教学系统 语义理解 自然语言理解 自动问题求解 ITS semantic analysis natural language processing automated problem solving
  • 相关文献

参考文献20

  • 1赵建华.智能教学系统概述[J].中国电化教育,2007(7):5-12. 被引量:20
  • 2陈仕品,张剑平.智能教学系统的研究热点与发展趋势[J].电化教育研究,2007,28(10):41-46. 被引量:44
  • 3余金昌.网络课程答疑系统的研究与实现[J].中国电化教育,2006(6):105-107. 被引量:7
  • 4李爽,陈丽.国内外网上智能答疑系统比较研究[J].中国电化教育,2003(1):80-83. 被引量:42
  • 5Angel F. Zazo, Carlos G. Figuerola, Jose L. Alonso Berrocal, Emilio Rodrlguez. reformulation of queries using similarity[J]. Information Processing & Management,2005, 41 (9): 1163-1173.
  • 6Bobrow DG. Natural Language Input for a Computer Problem Solving System[M]. Report MAC-TR-1, Project MAC, MIT, Cambridge, 1964.
  • 7Charniak E. Computer solution of calculus word problems [A]. Proceedings of international joint conference on artificial intelligence [C]. Washington, DC: 1969:303-316.
  • 8Gelb JP. Experiments with a natural language problem solving system[A]. Proceedings of the 2nd international joint conference on Artificial intelligence [C]. London, England: 1971:565-571.
  • 9De Kleer J. Multiples representation of knowledge in a mechanics problem-solver [A]. Proceedings of the 5th international joint conference on Artificial intelligence [C]. San Francisco. Morgan Kaufmann publishers Inc: 1977:299-304.
  • 10Gordon S.Novak. Representation of knowledge in a program for solving physics problems.[A] Proceedings of the 5th international joint conference on Artificial intelligence [C]. San Francisco. Morgan Kaufmann publishers Inc: 1977:286-291.

二级参考文献57

  • 1张庆林,管鹏.小学生表征应用题的元认知分析[J].心理发展与教育,1997,13(3):13-16. 被引量:36
  • 2纪桂萍,焦书兰,何海东.小学生数学问题解决与心理表征[J].心理发展与教育,1996,12(1):29-32. 被引量:30
  • 3刘巍.远程学习策略指导研究现状[J].远程教育杂志,2006,24(6):52-55. 被引量:4
  • 4陈天云,张剑平.智能教学系统(ITS)的研究现状及其在中国的发展[J].中国电化教育,2007(2):95-99. 被引量:35
  • 5Daniela Lucangeli, Patrizio E Tressoldi, and Michela Cendron. Cognitive and Metacognitive Abilities Involved in The Solution of Mathematical Word Problems: Validation of A Comprehensive Model . Contemporary Educational psychology , 1998, 23(2) :257 - 275.
  • 6Tom Lowrie, Russell Kay. Relationship Between Visual and Nonvisual Solution Methods and Difficulty in Elementary Mathematics. The Journal of Educational Research, 1994,94(4) :248 - 255.
  • 7Elizabeth P Kirk and Mark H Ashcraft . telling stories:the perils and promise of using verbal reports to study math strategies. Journal of experiment psychology: learning Memory and Cognition, 2001, 27(1):157- 175.
  • 8H Lee Swanson and Carole Saches-Lee. Mathematical Problem Solving and Working Memory in Children With Learning Disabilities: Both Executive and Phonological Processes are Important. Journal of Experimental Child Psychology, 2001, 79(3) :294 - 321.
  • 9杜晓新 冯震.元认知与学习策略[M].北京:人民教育出版社,1999.10-31.
  • 10廖均勇.《网络自动答疑系统的设计实现》硕士论文,2000.5

共引文献123

同被引文献31

  • 1[美]G.波利亚.怎样解题[M].北京:科学出版社,1982.
  • 2中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2011.
  • 3Nathan,M.J.,Kintsch,W., Young,E.. A Theory of Algebra-Word-Problem Comprehension and Its Implications for the Design of Learning Environments[J]. Cognitive and Instruction, 1992, (9) :329-389.
  • 4VanLehn, K., et al.The Andes Physics Tutoring System: Lessons Leamed[J].Intemational Journal of Artificial Intelligence in Education, 2005,15(3) : 147-204.
  • 5Derry,S.J., Hawkes,L.W.. Local Cognitive Modeling of Problem-Solving Behavior: An Application of Fuzzy Theory[A]. S.P.Lajoie, S. J.Derry. Computers as Cognitive Tools[C]. Hillsdale, NJ: Lawrence Erlbaum, 1993.
  • 6Mayer, R.E., & Hogarty, M..The Process of Understanding Mathematical Problems[M].Mahwah, NJ :Lawrence Erlbaum Associates, Inc, 1996: 29-53.
  • 7Montague, M..The Effects of Cognitive and Metacognitive Strategy Instruction on Mathematical Problem Solving of Middle School Students With Learning Disabilities[J]. Journal of Learning Disabilities, 1992, (25):230-248.
  • 8Jitendra,Asha K., & Hoff, Kathryn. The Effects of Schema-Based Instruction on the Mathematical Word-Problem-Solving Performance of Students with Learning Disabilities[J]. Journal of Learning Disabilities, 1996, (29):422-431.
  • 9Jitendra, Asha K., & Xin, Yan Ping. Mathematical Word Problem Solving Instruction for Students with Mild Disabilities and Students at Risk for Math Failure: A Research Synthesis[J]. The Journal of Special Education, 1997, (30) :412-438.
  • 10Jitendra,Asha K., Griffin, C.,et.al. Effect of Mathematical Word Problem Solving by Students at Risk or With Mild Disabilities[J]. The Journal of Educational Research, 1998,91 (6) : 345-356.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部