期刊文献+

CuNi-GDC双金属阳极支撑的IT-SOFC制备及性能 被引量:2

Synthesis and properties research of CuNi-GDC double metal anode supported for IT-SOFC
下载PDF
导出
摘要 采用柠檬酸低温自蔓延燃烧法制备了具有纳米尺度的Cu0.5Ni0.5O-GDC阳极粉末,利用差热分析、XRD对其物相进行了分析。研究了CuNi-GDC阳极片在氢气中还原前后的孔隙率和微观组织,对其电导率进行测试,并研究了CuNi-GDC阳极支撑的电池性能。结果表明:通过柠檬酸低温自蔓延燃烧法可以在较低的温度下合成出高催化活性的纳米粉末,CuNi-GDC阳极片还原后孔隙率达到了31.08%;CuNiO-GDC阳极片在空气中的电导率较低,导电活化能为39.494 4 kJ/mol,在H2气氛中的电导率大大提高,导电活化能为3.690 6 kJ/mol,650℃的电导率达到了209.299S/cm。以CuNiO-GDC双金属阳极支撑的单电池在650℃电池的开路电压为0.7 V,最大输出功率为0.278 W/cm2,短路电流密度为1.452 A/cm2。 Cu0.5Ni0.5O-GDC anode powders with nanoscale were prepared by nitrate-citric acid method.Anode powders were investigated by DSC-TG and XRD.The microstructure and properties of the CuNi-GDC anode material before and after reduction were investigated and the performance of the battery was also tested.The results show that nano-powders with high catalytic activity can be synthesized by the nitrate-citric acid method at a lower temperature;the porosity of CuNi-GDC anode was 31.08% after reduction.The electric conductivity of the Cu0.5Ni0.5O-GDC anode is low in the air,but in the H2 atmosphere,the conductivity is greatly improved and the conductive activation energy is 39.494 4 kJ/mol and 3.690 6 kJ/mol respectively.The electrical conductivity reaches 209.299 S/cm at 650 ℃.The open circuit voltage(OCV) for the cell of CuNi-GDC double metal anode supported is about 0.7 V,the maximum power density of 0.278 W/cm2 and a short circuit density of 1.452 A/cm2 of the cell are observed at 650 ℃.
出处 《电源技术》 CAS CSCD 北大核心 2012年第8期1128-1131,共4页 Chinese Journal of Power Sources
关键词 柠檬酸低温自蔓延燃烧法 中温固体氧化物燃料电池 CuNi-GDC阳极 nitrate-citric acid method; IT-SOFC; CuNi-GDC anode;
  • 相关文献

参考文献15

  • 1韩敏芳;彭苏萍.固体氧化物燃料电池材料及制备[M]北京:科学出版社,20048.
  • 2衣宝廉.燃料电池:原理@技术@应用[M]北京:化学工业出版社,20037.
  • 3RIKUKAWA M,SANUI K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J].Progress in Polymer Science,2000,(10):1463-1502.doi:10.1016/S0079-6700(00)00032-0.
  • 4CHOY K,BAI W,CHAROJROCHKUL S. The development of intermediate-temperature solid oxide fuel cells for the next millennium[J].Journal of Power Sources,1998,(1/2):361-369.
  • 5SINGHAL S C. Advances in solid oxide fuel cell technology[J].Solid State Ionics,2000,(1/4):305-313.doi:10.1016/S0167-2738(00)00452-5.
  • 6STEELE B C H. Appraisal of Ce1-yGdyO2-y2 electrolytes for ITSOFC operation at 500 ℃[J].Solid State Ionics,2000,(1/4):95-110.doi:10.1016/S0167-2738(99)00319-7.
  • 7MOGENSEN M,SAMMES N M,TOMPSETT G A. Physical,chemical and electrochemical properties of pure and doped ceria[J].Solid State Ionics,2000,(1/4):63-94.doi:10.1016/S0167-2738(99)00318-5.
  • 8SCHICHLEIN H,M(O)LLER A C,VOIGTS M. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J].Journal of Applied Electrochemistry,2002,(08):875-882.doi:10.1023/A:1020599525160.
  • 9LEE S I,VOHS J M,GORTE R J. A study of SOFC anodes based on Cu-Ni and Cu-Co Bimetallics in CeO2-YSZ[J].Journal of the Electrochemical Society,2004,(09):A1319-A1323.
  • 10GORTE R J,VOHS J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons[J].Journal of Catalysis,2003,(1/2):477-486.doi:10.1016/S0021-9517(02)00121-5.

二级参考文献9

共引文献6

同被引文献16

  • 1JOON K. Fuel cells-a 21 st century power system [J].Joumal of Power Sources, 1998, 71:12-18.
  • 2LIU Y, COMPSON C, LIU M L. Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells [J]. Journal of Power Sources, 2004, 138(1/2): 194-198.
  • 3CHENG J H, BAO W T, HAN C L, et al. A novel electrolyte for in- termediate solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1849-1853.
  • 4ABAKEVICIENE B, ZALGA A, TAUTKUS S, et al. Synthesis of YSZ thin films by the novel aqueous sol-gel citrate-precursor me- thod[J]. Solid State Ionic, 2012, 225:73-76.
  • 5SUN W W,HUANG X Q, LU Z et al. NiO+YSZ anode substrate lbr screen-printing fabrication of YSZ electrolyte film in solid oxide fuel cell[J]. Journal of Physics and Chemistry of Solids, 2009, 70( 1 ): 164-168.
  • 6LIU M F, GAO J F, DONG D H, et al. Comparative study on the performance of tubular and button cells with YSZ membrane fabri- cated by a refined particle suspension coating technique[J]. Interna- tional Journal of Hydrogen Energy, 2010, 35:10489-10494.
  • 7YI F Y, LI H, CHEN H Y, et al. Preparation and characterization of La and Cr co-doped SrTiO3 materials for SOFC anode[J]. Ceramics Intemation, 2013, 39(1 ):347-352.
  • 8张耀辉,刘江,黄喜强,吕喆,苏文辉.湿粉末法制备阳极支撑型固体氧化物燃料电池及其性能[J].功能材料,2008,39(5):827-829. 被引量:1
  • 9梁明德,于波,文明芬,陈靖,徐景明,翟玉春.YSZ电解质薄膜的制备方法[J].化学进展,2008,20(7):1222-1232. 被引量:5
  • 10王海霞,屠恒勇.SOFC阴极材料La_(0.6)Sr_(0.4)CoO_(3-δ)的甘氨酸-硝酸盐法合成与表征[J].功能材料,2010,41(3):397-400. 被引量:5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部