期刊文献+

SE(3)上一般力学控制系统的运动描述与飞行器建模 被引量:2

Kinematic Description of a General Mechanical Control System on SE(3) and Aircraft Modeling
原文传递
导出
摘要 与Lie群上的简单力学控制系统不同,Lie群上的一般力学控制系统需要考虑势能在位形空间中的变化,故其Lagrange算子不再是左不变的,这意味着根据定义Euler-Poincaré方程不能直接应用于此类系统。为此,本文首先建立矩阵Lie群SE(3)上的一般力学控制系统的数学描述,重新定义Lagrange算子为左不变动能减势能;然后基于连续La-grange-d’Alembert法则推导得到了含有势能函数的Euler-Poincaré方程,用来刻画SE(3)上一般力学控制系统的动态;最后给出了四旋翼无人直升机和无人飞艇建模的应用实例。 Unlike simple mechanical control systems on a Lie group, a general mechanical control system on a Lie group includes a variable potential in configuration space, which makes it impossible for the Lagrangian of such a system to be left invariant. This means, by definition, that the Euler-Poincar6 equation cannot be applied directly to such a system. This paper first introduces the mathematical definitions of a general mechanical control system on matrix Lie group SE(3). Secondly, by redefining the Lagrangian of left-invariant kinematic energy minus potential energy, a modified Euler-Poincare equation involving a potential function is deduced and obtained based on the continuous Lagrange-d'Alembert principle to describe the dynamics of the general mechanical control systems on SE(3). Finally, two applications of modeling an unmanned quadrotor and an unmanned airship are presented to verify the proposed approach.
作者 左宗玉
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第8期1491-1497,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61074010)~~
关键词 一般力学控制系统 矩阵Lie群 左不变 Euler-Poincaré方程 四旋翼直升机 飞艇 general mechanical control system matrix Lie group left-invariant Euler-Poincar equation quadrotor air-ships
  • 相关文献

参考文献16

  • 1B H阿诺尔德.经典力学的数学方法.齐民友,译.北京:高等教育出版社,2006.
  • 2Bullo F, Lewis A D. Geometric control of mechanical sys- tems--mode|ing, ana[ysis, and design {or simple mechani- cal control systems. New York: Springer, 2004.
  • 3Martlnez S, Cort6s J, Bullo F. A catalog of inverse-kine matics planners for underactuated systems on matrix groups. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003: 625-630.
  • 4Bullo F, Leonard N E, Lewis A D. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups. IEEE Transactions on Automatic Control, 2000, 45(8) : 1437-1454.
  • 5Nordkvist N. Motion control along relative equilibria. Denmark: Department of Mathematics, Technical Univer- sity of Denmark, 2008.
  • 6Nordkvist N, Sanyal A. A Lie group variational integrator for rigid body motion in SE(3) with applications to under- water vehicle dynamics. 49th IEEE Conference on Deci- sion and Control, 2010: 5414-5419.
  • 7Lee T, Leok M, McClamroch N H. Geometric tracking control of a quadrotor UAV on SE(3). 49th IEEE Con- ference on Decision and Control, 2010: 5420 5425.
  • 8Frazzoli E. Robust hybrid control for autonomous vehicle motion planning. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute o{ Technology, 2001.
  • 9Marsden J, Ratiu T. Introduction to mechanics and sym- metry a basic exposition of classical mechanical systems. 2nd ed. New York: Springer, 1999.- 1-9.
  • 10Kallem V, Chang D E, Cowan N J. Task induced symme- try and reduction with application to needle steering. IEEE Transactions on Automatic Control, 2010, 55(3): 664-673.

同被引文献20

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部