期刊文献+

HWCVD与RF-PECVD复合技术制备微晶硅薄膜的性能

Properties of Hydrogenated Microcrystalline Silicon Films Prepared by HWCVD and RF-PECVD Composite Technologies
下载PDF
导出
摘要 采用热丝化学气相沉积(HWCVD)和射频等离子体化学气相沉积(RF-PECVD)相结合的技术,在普通载玻片和聚酰亚胺衬底上沉积制备微晶硅薄膜。系统考查了热丝到衬底的距离对沉积薄膜结构和性能的影响规律,用拉曼光谱仪、X-射线衍射仪(XRD)、紫外可见光纤光谱仪对薄膜的晶化率、微观结构和光学性能进行研究。结果表明:薄膜沉积速率最高可达到0.73nm/s,晶化率和禁带宽度分别可以在0%~78%和0.86~1.28eV变化,射频等离子体的引入有助于多晶硅薄膜的(220)择优生长,HWCVD的引入有助于薄膜晶化。 A combination technique of HWCVD and RF-PECVD was used to prepare hydrogenated microcrystalline silicon(μc-Si:H) films on glass substrate and polyimide substrate.The disciplines of the effects of the distance from the glass substrate to the hot wire on the films' structure and properties were investigated.The crystallinity,microstructure,electrical and optical properties of the μc-Si:H films were investigated by raman spectroscopy,X-ray diffraction analysis(XRD),and UV-visible spectrometer.The results indicate that the crystallinity and energy gap of the μc-Si:H films can be controlled in a range of 0%-78% and 0.86-1.28 eV.The deposition rate is up to 0.73 nm/s.The microcrystalline silicon thin film with(220) preferred orientation can be obtained by introducing RF plasma.The films are liable to crystallize by introducing HWCVD.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2012年第4期84-88,共5页 China Surface Engineering
基金 教育部重点科技创新项目培养基金((N01707015) 表面工程国家重点实验室基金(9140C540105080C5402)
关键词 微晶硅薄膜 射频等离子体增强化学气相沉积 热丝气相沉积 microcrystalline silicon(μc-Si:H) films RF-PECVD HWCVD
  • 相关文献

参考文献13

  • 1Meier J, Dubail S, Golay S, et al. Microcrystalline silicon and the impact on micromorph tandem solar cells[J]. Solar Energy Materials and Solar Cells, 2002, 74(1): 457-467.
  • 2Rech B, Kluth O, Repmann T, et al. New materials and deposition techniques for highly efficient silicon thin film solar cells[J]. Solar Energy Materials & Solar Cells, 2002, 74(1/2/3/4):439-447.
  • 3Nasuno Y, Kondo M, Matsuda A. Microcrystalline silicon thin film solar cells prepared at low temperature usingPECVD [J]. Solar Energy Materials & Solar Cells, 2002, 74(1/2/3/4):497-503.
  • 4Tatsuo Shimizu, Staebler Wronski. Effect in Hydrogenated Amorphous Silicon and Related Alloy Films[J]. Invited Review Paper, 2004, 43(6A): 3257-68.
  • 5Staebler D L, Wronski C R. Reversible conductivity chan ges in discharge produced amorphous Si[J]. Applied Phys- ics Letters, 1977, 31(4): 292-294.
  • 6Veprek S, Marecek V. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport [J]. Solid- State Electronics, 1968, 11(7): 683-684.
  • 7Mai Y, Klein S, Carius R, et al. Open circuit voltage im provement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers [J]. Applied Physics Letters., 2005, 87(7):073503-073503-3.
  • 8金仲和,王跃林.MILC超薄沟道多晶硅薄膜晶体管[J].电子学报,2001,29(8):1068-1071. 被引量:13
  • 9李国光 杨恒青 黄家明 等.用透射光谱确定非晶硅薄膜的厚度和光学参数.红外研究,1987,6(5):321-328.
  • 10Schropp R E I. Present status of micro-polycrystalline sili con solar cells made by hot-wire chemical vapor deposition[J]. Thin Solid Films, 2004(451/452):455-465.

二级参考文献2

  • 1Jin Z H,IEEE Trans Electron Devices,1999年,46卷,1期,78页
  • 2Jin Z H,J Appl Phys,1998年,84卷,1期,194页

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部