期刊文献+

SVR在信号传递合约模型Ⅱ量化分析中的应用

SVR-based quantitatively study on signalling contract model
下载PDF
导出
摘要 为解决激励合约理论的量化和实际应用问题,提出了信号传递激励合约模型的基于SVR的数值分析方法。利用SVR对效用函数建模,对委托人通过激励合约向代理人传递其特征信号的优化模型Ⅱ进行了量化分析。具体推导出了该模型的梯度表达式,给出了相应的梯度法迭代算法,并进行数值计算和量化分析,观察上述信号传递模型中某些参数变化对合约均衡点变化趋势的影响。计算结果的合理性表明,用基于SVR的数值分析方法定量分析激励合约模型是可行的。 A SVR-based quantitative calculation method is proposed for solving signalling incentive contract model, in order that the relevant theory can be analyzed quantitatively and be put into practical use. Being able to calculate quantitatively, the sup- port vector regression (SVR) is used to express the utility function. Based on that, tile gradient expression of signalling model II is derived for both the principal providing high productivity with heavy workload and the principal supplying low productivity with easy workload, respectively. Then, the relevant gradient descent algorithms are given. Using our method, the signalling incentive contract models above are quantitatively analyzed, and the effects of parameters' varying to the changing trends of the signalling models' equilibriums are observed. The reasonable results show that it is feasible to solve signalling incentive contract model using our SVR-based quantitative calculation method.
作者 张振锋
出处 《微型机与应用》 2012年第16期81-84,共4页 Microcomputer & Its Applications
关键词 支持向量回归机 效用函数 信号传递 激励与合约 support vector regression utility function signalling incentive and contract
  • 相关文献

参考文献5

  • 1因内思·马可一斯达德勒,J.大卫·佩雷斯一卡斯特里罗,著.信息经济学引论:激励与合约[M].管毅平,译.上海:上海财经大学出版社,2004.
  • 2CHEKMAREV D, KHOLODOVYCH V, KORTAGERE S, et al.Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors[J].Pharmaceutical Research, 2009,26 ( 9 ) : 2216-2224.
  • 3Wang Shitong,Zhu Jiagang, CHUNG F L, et al.Theoretically optimal parameter choices for support vector regression machines Huber-SVR and Norm_r-SVR with noisy input [J ]. Soft Computing. 2005,9 (10) : 732 - 741.
  • 4朱嘉钢,王士同,杨静宇.鲁棒r-支持向量回归机中参数r的选择研究[J].控制与决策,2004,19(12):1383-1386. 被引量:12
  • 5张振锋,朱嘉钢.支持向量回归机在逆向选择合约模型量化分析中的应用[J].计算机应用,2010,30(3):779-782. 被引量:1

二级参考文献14

  • 1朱嘉钢,王士同,杨静宇.鲁棒r-支持向量回归机中参数r的选择研究[J].控制与决策,2004,19(12):1383-1386. 被引量:12
  • 2STADLER I M,CASTRILLO J D P.信息经济学引论:激励与合约[M].管毅平,译.上海:上海财经大学出版社,2004.
  • 3LAHIRI S K,GHANTA K C.Support vector regression with parameter tuning assisted by differential evolution technique:Study on pressure drop of slurry flow in pipeline[J].Korean Journal of Chemical Engineering,2009,26(5):1175-1185.
  • 4CHEKMAREV D,KHOLODOVYCH V,KORTAGERE S,et al.Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors[J].Pharmaceutical Research,2009,26(9):2216-2224.
  • 5WANG SHI-TONG,ZHU JIA-GANG,CHUNG F L,et al.Theoretically optimal parameter choices for support vector regression machines Huber-SVR and Norm_r-SVR with noisy input[J].Soft Computing,2005,9(10):732-741.
  • 6WANG S,ZHU J,CHUNG F L,et al.Experimental studies on the optimal parameter choice of Norm-r support vector regression machine Norm_r-SVR with noisy input[J].Soft Computing,2006,10(3):219-223.
  • 7ZHU JIA-GANG,WANG SHI-TONG,WU XI-SHENG,et al.A novel adaptive SVR based filter ASBF for image restoration[J].Soft Computing,2006,10(8):665-672.
  • 8LI SHAN-LIANG,WANG CHUN-HUA.Linear incentive contract for principal-Agent problem with asymmetric information and moral hazard[C]// APCCAS 2006:Proceedings of the 2006 IEEE Asia Pacific Conference on Circuits and Systems.Washington,DC:IEEE Computer Society,2006:634-637.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines[M]. Cambridge: Cambridge University Press, 2000.
  • 10Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部