期刊文献+

基于邻域相关性的背景重构

A Background Reconstruction Algorithm Based on Neighboring Correlation
原文传递
导出
摘要 背景差法是一种重要的运动检测方法,当场景中背景被长时遮挡,并非总是以最大频率出现时,往往容易将前景错误地认为是背景,从而产生错误的重构,针对该问题本文提出了一种基于邻域相关性的背景重构算法。算法首先对输入数据进行排序;其次利用简单归类算法对排序后的数据进行分类;再次计算灰度类的出现频率,根据灰度类的出现频率得到像素的背景确定标识,并为背景不确定的像素选定候选背景;最后对背景不确定的像素循环执行背景确定程序,即基于像素邻域相关性,选择和邻域相似度最大的候选背景为像素的确定背景。为验证算法的有效性,对算法进行了多种场景的仿真实验,仿真实验表明,即使在背景被长时遮挡的环境中,算法仍能很好构建背景,从而有利于后续的运动目标检测、识别和跟踪。 The background subtraction is an important method for detecting the moving objects, which is widely applied in the video monitor system. When background is occupied by a foreground for a long time, the foreground will be mistakenly regarded as a background. In order to solve the background reconstruction in which background does not always appears with the largest appearance frequency, a new background reconstruction algorithm based on neighboring correlation is proposed. At first, the data is sorted in an ascending or descending order; secondly, the sorted data is classified by the simple method; thirdly, the appearance frequency of classified classes is computed. The definite identity of background is obtained by appearance frequency. The candidate backgrounds are selected for the pixels without definite background; finally, background selection procedure based on neighboring correlation is repeatedly executed to the pixels until the background of all pixels has been obtained. Simulations results show that the algorithm is able to deal with the complex scene in which the background has been covered for a long time. The proposed algorithm is able to reconstruct the background of scene well, and therefore the target could be perfectly extracted and successfully tracked.
出处 《科技导报》 CAS CSCD 北大核心 2012年第24期57-61,共5页 Science & Technology Review
基金 国家自然科学青年基金(50908019)
关键词 候选背景 邻域相关性 背景重构 candidate background neighboring correlation background reconstruction
  • 相关文献

参考文献10

  • 1Long W, Yang Y. Stationary background generation: An alternative to thedifference of two images [J]. Pattern Recognition, 1990, 23 (12):1351- 1359.
  • 2Gloyer B, Aghajan H K, Siu K, et ol. Video-based freeway monitoring system using recursive vehicle tracking [J]. Proceedings of SPIE; 1995, 2421(1): 173-180.
  • 3Kornprobst P, Deriche R, Aubert G. Image sequence analysis via partial difference equations [J]. Journal of Mathematical Imaging and Vision, 1999, 11(1):5-26.
  • 4Cucchiara R, Grana C, Piccardi M, et ol. Detecting moving objects, ghosts, and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342.
  • 5侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 6肖梅,韩崇昭.基于在线聚类的背景减法[J].模式识别与人工智能,2007,20(1):35-41. 被引量:9
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, USA, 1999: 246-252.
  • 8Lee D S, Hull J J, Erol B. Proceedings of 2003 International Conference on Image Processing: A Bayesian framework for Gaussian mixture background modeling[C]. Institute of Electrical and Electronics Engineers Computer Society, Barcelona, Spain, 2003: 973-979.
  • 9Zivkovic Z, Van D H F. Reeursive unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Andysis and Machine Intelligence, 2004, 26(5): 651-656.
  • 10Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [C]//Proceedings of the 1999 7th IEEE International Conference on Computer Vision. Piscataway, NJ, USA: 1999.

二级参考文献42

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部