期刊文献+

抑制SAR图像相干斑的自适应红黑窗滤波算法 被引量:1

Adaptive red-black window algorithm for SAR image speckle reduction
下载PDF
导出
摘要 针对经典空域滤波算法处理SAR图像时,在同一滑动窗内完全按同质区域性质处理数据而导致图像细节信息损失的情况,提出一种新的滑动窗结构的算法。该算法选取与窗口中心像素统计特性相近的像素进行滤波处理,解决了经典空域滤波算法存在窗口内数据不满足滤波模型对同质区域要求的缺陷。同时,针对强散射点的特殊性,设计了相应的检测及处理方法。实验结果表明,该算法在获得与经典算法相当的相干斑抑制的同时,较经典算法具有更强的边缘和细节保持能力,同时获得更好的图像视觉效果。 When using the classical spatial filtering algorithm to process synthetic aperture radar (SAR) im ages, the identical sliding window is assumed to have homogeneous characteristics, which results in losing of image detail information. To solve the problem described above, a new sliding window structure is presented. The improved algorithm selects pixels that have similar statistical characteristics to the central pixel for struc- ture modeling. Meanwhile, a special detecting and processing strategy is designed to tackle strong scattering points. The airborne SAR image is processed to verify the effectiveness of the method. While maintaining the comparative ability in reducing speckle as the classical algorithm, the proposed algorithm achieves more edge and detail information as well as better image visual effects.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第8期1576-1580,共5页 Systems Engineering and Electronics
关键词 合成孔径雷达图像 相干斑 滤波 自适应滑动窗口 synthetic aperture radar (SAR) image speckle filter adaptive sliding window
  • 相关文献

参考文献12

  • 1Chris O, Ouegan S. Understanding synthetic aperture radar ima ges[M]. UK: SciTech Publishing Inc,2004:75 - 123.
  • 2Lu B B, Zhang L L, Xing F Q. SAR speckle reduction based on nonlocal means methodiC] // Proc. of the International Confer- ence on Computer Modeling and Simulation, 2010:156 - 159.
  • 3Touzi R. A review of speckle filtering in the context of estima- tion theory[J 1- Geoscience and Remote Sensing, 2002,40 (11) : 2392 - 2404.
  • 4Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans. on Pattern Analysis and Ma- chine Intelligence, 1980,26(2) : 165 - 168.
  • 5Kuan D T, Sawehuck A A, Chavel P. Adaptive noise smoothing fil- ter for images with signal-dependent noise[J]. IEEE Trans. on Pat- tern Analysis and Machine Intelligence, 1985,7(2) : 165 - 177.
  • 6Frost V S, Stiles J A, Shanmugan K S, et al. A model for radarimages and its application to adaptive digital filtering of multi- plicative noise[J]. IEEE Trans. on Pattern Analysis and Ma- chine Intelligence, 1982, 4(2) 157 - 166.
  • 7Zhou Q, Gong P, Guo Z Q. A speckle reduction method based on hyperspectral and SAR image fusion[C]//Proc, of the Inter- national Conference on Multimedia Technology, 2010 1 -5.
  • 8Lee J S, Wen J H, Ainsworth T L, et al. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Trans. on Geo science and Remote Sensing, 2009,47(1)202 -213.
  • 9Mashaly A S, AbdElkawy E E F, Mahmoud T A. Speckle noise re duction in SAR images using adaptive morphological filter[C] // Proc. of the lOth Intelligent Systems Design and Applications, 2010.. 260-265.
  • 10Chen G Z, Huang Y W. To improve the GMAP for speckle fil tering by consideration of the correlation of SAR images[C]// Proc. of the Intelligent Signal Processing and Communication Systems, 2007 124 - 127.

同被引文献14

  • 1Kuan T. Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustic Speech and Signal Processing,1987,(3):373-383.
  • 2Frost V,Stiles J,Shanmugan K. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,(2):157-166.
  • 3Yu Y,Acton S. Speckle reducing anisotropic diffusion[J].{H}IEEE Transactions on Image Processing,2002,(11):1260-1270.
  • 4Yu Jin-hua,Wang Yuan-yuan,Shen Yu-zhong. Noise reduction and edge detection via kernel anisotropic diffusion[J].{H}Pattern Recognition Letters,2008,(10):1496-1503.
  • 5Liu Guo-jin,Zeng Xiao-ping,Tian Feng-chun. Speckle reduction by adaptive window anisotropic diffusion[J].{H}SIGNAL PROCESSING,2009,(11):2233-2243.
  • 6Bhuiyanr M,Ahmad M,Swamy M. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2007,(4):500-507.
  • 7Jesper S,Henning S,Allan A. CFAR edge detection for polarimetric SAR images[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2003,(1):20-32.
  • 8Shui Peng-lang,Chen Dong. Edge detector of SAR images using Gaussian-Gamma-shaped bi-windows[J].{H}IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2012,(5):846-850.
  • 9常霞,焦李成,刘芳,沙宇恒.基于斑点方差估计的非下采样Contourlet域SAR图像去噪[J].电子学报,2010,38(6):1328-1333. 被引量:16
  • 10贾建,陈莉.基于双变量模型和非下采样Contourlet变换的SAR图像相干斑抑制[J].电子与信息学报,2011,33(5):1088-1094. 被引量:14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部