期刊文献+

基于剪枝策略的改进TDCALT算法 被引量:2

Improved TDCALT Algorithm Based on Pruning Strategy
下载PDF
导出
摘要 针对大规模路网中求解最短路问题的低效性与非实时性,通过时间依赖性路网来刻画路网和交通状况信息,构造时间依赖性路网下的高效最短路算法.以目前效率较高的TDCALT(time dependent core-based A*landmarks triangleinequality)算法为基础,提出动态优化上限值的改进措施,并首次引入和改进静态路网下最短路算法中的剪枝策略,形成ITDCALT(improved TDCALT)算法.在广州市路网上的试验表明:ITDCALT算法在算法运行时间和搜索空间上均优于TDCALT算法和TDIJKSTRA(time-dependent DIJKSTRA)算法;ITDCALT算法具有计算效率高、搜索空间小、性能稳定的优点. To address the inefficiency and non-real time of shortest path problem with large scale traffic road network, an efficient algorithm is developed under time-dependent road network which represents road network and traffic information. Based on time dependent core-based A* landmarks triangle inequality (TDCALT) algorithm which outperforms the other algorithms, improvement including updating upper bound dynamically and combining improved pruning strategy used in static shortest path algorithm is proposed. Finally a new algorithm called improved TDCALT (ITDCALT) is formed. Comparative analysis between ITDCALT, TDCALT and time-dependent DUKSTRA (TDIJKSTRA) in time-dependent road network of Gnangzhou shows that the proposed algorithm outperforms the others in terms of the efficiency, the search space and the stability.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期1197-1203,共7页 Journal of Tongji University:Natural Science
基金 广东省自然科学基金(S2011010001274) 教育部人文社会科学研究规划基金(12YJAZH209 10YJC790116) 广东省现代信息服务业发展专项资金扶持项目(06120840B0450124/2)
关键词 路网最短路算法 剪枝策略 时间依赖性 加速策略 shortest path algorithm pruning strategy time-dependent speed up strategy
  • 相关文献

参考文献20

  • 1Sommer C. Approximate shortest path and distance queries in networks[D]. Tokyo: The University of Tokyo, 2010.
  • 2Bauer R, Columbus T, Katz B, et al. Preprocessing speed-up techniques is hard[C]//Algorithms and Complexity. Rome: Springer Verlag,2010: 359-370.
  • 3Sanders P, Schultes D. Highway hierarchies hasten exact shortest path queries [C]//13th European Symposium on Algorithms. Palma de Mallorca.. Springer Verlag, 2005: 568- 579.
  • 4Delling D, Nannicini G. Bidirectional core-based routing in dynamic time-dependent road networks [C]//Proceedings of 19th International Symposium on Algorithms and Computation. Gold Coast: Springer Verlag,2008:813-824.
  • 5Sherali H D, Hobeika A G, Kangwalklai S, et al. Time- dependent, label-constrained shortest path problems with applications[J].Transportation Science, 2003, 37(3): 278.
  • 6SheraliH D, Jeenanunta C, Hobeika A G. The approach- dependent, time-dependent, label-constrained shortest path problem [J]. Networks, 2006, 48(2):56.
  • 7Demetrescu C, Italiano G F. Algorithmic techniques for maintaining shortest routes in dynamic networks [ J ]. Electronic Notes in Theoretical Computer Science, 2007, 171 (1)13.
  • 8Cooke K L. The shortest route through a network with time- dependent internodal transit times[J].Journal of Mathematical Analysis and Application, 1966,14(3) : 493.
  • 9Buriol L S, Resende M G C, Thorup M. Speeding up dynamic shortest-path algorithms[J]. Journal on Computing, 2008, 20 (2) : 191.
  • 10Hamacher H W, Ruzika S, Tjandra S A. Algorithms for time- dependent bicriteria shortest path problems [J]. Discrete Optimization, 2006,3(3) :238.

二级参考文献20

  • 1李丹,张爱华,张志强.最短路径的并行加速比的研究[J].渤海大学学报(自然科学版),2004,25(3):230-232. 被引量:1
  • 2MICHELLE R HRIBAR,VALERIE E TAYLOR.Termination Detection for Parallel Shortest Path Algorithms[R].Chicago:Technical Report CSE-97-004,Computer Science-Engineering,EECS Department,Northwestern University,1997.
  • 3DEO N,PANG C Y.Shortest Path Algorithms:Taxonomy and Annotation[J].Networks,1984,14 (2):275-323.
  • 4P TSENG,D P BERTSEKAS,J N TSITSIKLI.Partially asynchronous,parallel algorithms for network flow and other problems[J].SIAM Journal on Control and Optimization,1990,28 (3):678-710.
  • 5R C PAIGE,C P KRUSKAL.Parallel algorithms for shortest path problems[C]// Proceedings of the International Conference on Parallel Processing.1985:14-20.
  • 6K M CHANDY,J MISRA.Distributed computation on graphs:shortest path algorithms[J].Communications of the ACM,1982,25 (11):833-837.
  • 7MHABBAL,HKOUTSOPOULOS,SLERMAN.A decomposition algorithm for the all-pairs shortest path problem on massively parallel computer architectures[J].Transportation Science,1994,28 (3):273 -290.
  • 8S DEY,P K SRIMANI.Fast parallel algorithm for all-pairs shortest path problem and its VLSI implementation[J].IEE Proceedings,Part E:Computers and Digital Techniques,1989,136 (2):85-89.
  • 9A CRAUSER,KMEHLHORN,UMEYER,PSANDERS.A parallelization of Dijkstra's shortest path algorithm[C] // Brno,Czech Republic,Springer.Proceedings of the 23rd Symposium on Mathematical Foundations of Computer Science.Berlin:Lecture Notes in Computer Science,1998.
  • 10P NARAYANAN.Single source shortest path problem on processor arrays[C]// Proceedings Frontiers of Massively Parallel Computation.McLean,VA:1992.

共引文献10

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部