期刊文献+

基于全知熵的模式集成不确定性度量模型 被引量:2

Uncertainty Measure Model of Schema Integration Based on All Known Entropy
下载PDF
导出
摘要 不确定性是模式集成的一个固有性质,不确定性度量对模式集成具有重大影响。本文提出一种度量模型,在该模型中模式对象及其属性清洗模块使该模型免受规模影响。根据模式集成多属性分阶段决策的特点,本文基于粗糙集理论的全知熵不确定率进行各阶段的不确定性度量,并把过程模型的不确定性度量引入到总体不确定性的度量中,最后给出了合成多不确定率的方法。实例分析证实所设计模型是可行、有效的。 Uncertainty is intrinsic in schema integration. An uncertainty measure model of schema integration system (SIS) is presented. Schema object cleanout module and its attribute cleanout module can make the model measure uncertainty of large-scale SIS. Schema integration is a process with multi-attribute and decision-making. Uncertainty ratio based on all known entropy of rough set is adopted for measuring uncertainty of submodels of SIS. Uncertainty measure of process model is used in whole uncertainty measure. The method for synthesizing the uncertainty ratio is provided. Experimental results show that the presented model is feasible and effectual.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第4期575-579,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60903027)资助项目 江苏省自然科学重大研究(BK2011023)资助项目 江苏省自然科学基金(BK2011370)资助项目
关键词 不确定性度量 粗糙集理论 模式集成 全知熵 过程模型 uncertainty measure rough set theory schema integration all known entropy process model
  • 相关文献

参考文献12

  • 1Dong X L, Halevy A Y, Yu C. Data integration with uncertainty [J]. The VLDB Journal, 2009, 18 (2) : 469-500.
  • 2Yu Daren, Hu Qinghua, Wu Congxin. Uncertainty measures for fuzzy relations and their applications I-J]. Applied Soft Computing, 2007, 7 (3): 1135- 1143.
  • 3Pawlak Z, Skowron A. Rudiments of rough sets [J]. Information Sciences, 2007, 177(1) : 3-27.
  • 4Qian Yuhua, Liang Jiye, Li Deyu, et al. Measures for evaluating the decision performance of a decision table in rough set theory [J]. Information Sciences, 2008, 178(1): 181-202.
  • 5Liu Guilong. Rough set theory based on two univer- sal sets and its applications [J]. Knowledge-Based Systems, 2010, 23(2):110-115.
  • 6Jung Jaeyoon, Chin Changho, Cardoso J. An en- tropy-based uncertainty measure of process models [J]. Information Processing Letters, 2011, 111(3) 135-141.
  • 7Magro M C, Pinceti P. A confirmation technique for predictive maintenance using the rough set theory [J]. Computing & Industrial Engineering, 2009, 56 (4) : 1319-1327,.
  • 8赵军,周应华.基于粗集理论的系统不确定性度量方式研究[J].小型微型计算机系统,2010,31(2):354-359. 被引量:2
  • 9王国胤,何晓.一种不确定性条件下的自主式知识学习模型[J].软件学报,2003,14(6):1096-1102. 被引量:36
  • 10Chert Xianghui, Zhu Shanjun, Ji Yindong. Rule un- certainty measurements based on entropy and vari- able rough set [J]. Journal of Tsing hua University (Science ~ Technology Edition), 2001, 47(3) : 109- 112.

二级参考文献27

  • 1黄福玉,冯玉强,王龙,芦鹏宇.基于关系模型的不确定性知识表示与推理及其在KMS中的应用[J].南京理工大学学报,2006,30(5):653-658. 被引量:8
  • 2王国胤.决策表信息系统中的不确定性度量[J].计算机科学,2001,28(5):23-26.
  • 3Pawlak Zdzislaw. Rough sets[ I ]. International Journal of Computer and Information Science, 1982,11 (5) :341-356.
  • 4Duntsch Ivo, Gediga Gunther. Uncertainty measures of rough set prediction[ J]. Artificial Intelligence, 1998,106:109-137.
  • 5Mollestad Torulf. A rough set framework for data mining of propositional default rules,lecture notes in computer science[ M]. Springer Verlag, 1996,1079:448457.
  • 6Ziarko Wojciech. Variable precision rough set model[ J]. Journal of Artificial Intelligence, 1993,46:39-59.
  • 7http ://www. ics. uei. edu/- mlearn/MLRepository, html,2006.
  • 8Nguycn Hung- Son, Skowron Andrzej. Quantization of real values attributes, rough set and boolean reasoning approaches [ C ]. Proceedings of and Joint Annual Conference on Information Science, Wrightsvillc Beach, NC, USA, 1995,34-37.
  • 9Magnani M, Rizopoulos N, McBrien P, et al. Conceptual modeling - ER 2005 [ M ]. Heidelberg: Springer Berlin,2005 : 31 -46.
  • 10Magnani M, Montesi D. Uncertainty in data integration: Current approaches and open problems [ A ]. Proceedings of the First VLDB Workshop on Manage- ment of Uncertain Data [ C]. Enschede, The Netherlands: the Centre for Telematics and Information Technology( CTIT), 2007 : 18 - 31.

共引文献37

同被引文献37

  • 1徐菲菲,苗夺谦,李道国,魏莱.基于覆盖的粗糙模糊集的粗糙熵[J].计算机科学,2006,33(10):179-181. 被引量:13
  • 2SHVAIKO P, EUZENAT J. A survey of schema-based matc- hing approaches [ J ]. Journal on Data Semantics IV, 2005 (3730) : 146-171.
  • 3MAGNANI M, RIZOPOULOS N, BRIEN P, et al. Schema integration based on uncertain semantic mappings [ J ]. Lec- ture Notes in Computer Science, 2005(3716) : 31-46.
  • 4HALEVY A, RAJARAMAN A, ORDILLE J. Data integra- tion : the teenage years [ Z ]. Seoul, 2006 : 9-16.
  • 5MAGNANI M, MONTESI D. Probabilistic data integration [R]. Bologna(italy): UBLCS, 2009.
  • 6DONG X L, HALEVY A, YU CONG. Data integration with uncertainty[ J]. The VLDB Journal, 2009, 18: 469-500.
  • 7AVIGDOR G. Managing uncertainty in schema matching with top-k schema mappings [ J ]. Journal on Data Seman- tics, 2006, 6: 90-114.
  • 8LIU Baoding. Uncertainty theory[ M]. Berlin: Springer-Ver- lag, 2007: 3-12.
  • 9LIU Baoding. Some research problems in uncertainty theory [J]. Journal of Uncertain Systems, 2009, 3(1): 3-10.
  • 10PAWLAL Z. Rough sets [ J ]. International Journal of Com- puter and Information Science, 1982, 11 (5) : 341-356.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部