期刊文献+

聚类融合在邮件社区划分中的应用研究

Application Research of Clustering Ensembles in Mail Community Partitioning
下载PDF
导出
摘要 结合聚类融合方法的优点,探索了聚类融合方法在邮件社区划分中的应用,并提出了一种基于聚类融合的邮件社区划分方法。该方法中应用了聚类融合思想,继承了聚类融合方法的优点,能发现复杂的社区结构,不受离群点干扰,显著提高社区划分质量。模拟实验发现,这种社区划分方法法能够发现高质量的社区。 Based on Clustering Ensembles Method, exploration the application of Clustering Ensembles Method in mail community partition, and presents a new method of mail community partition method based on Clustering Ensembles, inherited the advantages of clustering Ensembles method, can be found complex community structure, not affected by outiiers, and improved quality of community division. Simuiation experiment present that this method can find high quality community.
出处 《信息安全与技术》 2012年第8期103-105,共3页
基金 校级青年科研基金重点项目资助(编号:2012QNA01)。项目名称:邮件社区划分及垃圾邮件处理方法的研究
关键词 聚类融合 邮件社区 K—mediods clustering ensembles mail community K-mediods
  • 相关文献

参考文献8

  • 1A Fred. Finding Consistent Clusters in Data Partitions[A].Springer-verlag,2001.309-318.
  • 2A K Jain,M NMurty,P J Flynn. Data Clustering A Review[J].ACM Computing Surveys,1999,(03):264-323.
  • 3A Fred,A K Jain. CombiningMultiple ClusteringsUsing Evidence Accumulation[J].IEEE Transactions on Pattern Ansalysis and Mechine Intelligence,2005,(06):835-850.
  • 4L IKuncheva,S THadjitodorov. Using Diversity in Cluster Ensembles[A].2004.1214-1219.
  • 5L I Kuncheva,D P Vetrov. Evaluation of Stability of kMeans Cluster Ensembles with Respect to Random Initialization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(11):1798-1808.
  • 6Jiawei Han;Micheline Kamber;FAN Ming;MENG Xiao-feng.Data Mining Concepts and Techniques[M]北京:机械工业出版社,2001261-273.
  • 7李金磊,朱晓莲,朱海燕.一种基于投票策略的聚类融合算法[J].计算机仿真,2008,25(3):126-128. 被引量:5
  • 8陈绍宇,宋佳兴,刘卫东,王诚.关系网格:一种基于小世界模型的社会关系网络[J].计算机应用研究,2006,23(5):194-197. 被引量:14

二级参考文献15

  • 1D Watts, S Strogatz. Collective Dynamics of ‘ Small World' Networks[J]. Nature, 1998,393(6684) :440-442.
  • 2I Foster, C Kesselman, S Tueckel. The Anatomy of the Grid: Enabling Scalable Virtual Organizations[ C ]. Proceedings of the 1 st IEEE/ACM International Symposium on Cluster Computing and the Grid,2001.6-7.
  • 3S Wasserman, K Faust. Social Network Analysis: Methods and Applications[ M]. Cambridge: Cambridge University Press, 1994.
  • 4M H Zack. Researching Organizational Systems Using Social Network Analysis[ C]. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.
  • 5Y Upadrashta, J Vassileva, W Grassmann. Social Networks in Peer-to-Peer Systems[ C ]. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005.
  • 6A Fred. Finding Consistent Clusters in Data Partitions[ C]. Proceedings of the 2nd International Workshop on Multiple Classifier Systems, Volume 2096 of Lecture Notes in Computer Science, Springer, 2001. 309-318.
  • 7A K Jain, M N Murty and P J Flynn. Data Clustering: A Review [ J ]. ACM Computing Surveys, 1999,31 (3) :264-323.
  • 8A Fred and A K Jain. Combining Multiple Clusterings Using Evidence Accumulation [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005,27(6): 835-850.
  • 9T Dietterich. Ensemble Methods in Machine Learning [ C ]. Proceedings of the 1 st International Workshop on Multiple Classifier Systems. 2000. 1-15.
  • 10A Fred, A K Jain. Data Clustering Using Evidence Accumulation [C]. Proceedings of the 16th International Conference on Pattern Recognition ( ICPR 2002), 2002. 276-250.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部