期刊文献+

一种基于有向二分图模型和贝叶斯网络的入侵检测方法 被引量:1

An Intrusion Detection Approach based on the Directed Bipartite Graph and the Bayesian Network
下载PDF
导出
摘要 针对入侵检测中存在的非确定性推理问题,文章提出一种基于二分图模型和贝叶斯网络的入侵检测方法,该方法利用二分有向图模型表示入侵和相关特征属性之间的因果拓扑关系,利用训练数据中获取模型的概率参数,最后使用最大可能解释对转化后的推理问题进行推理,并通过限定入侵同时发生的数目来提高检测效率。实验表明,该方法具有较高的检测率和很好的鲁棒性。 Aim to the uncertainty reasoning problem in the Intrusion detection, we proposed an approach t^asea on the directed bipartite graph and the Bayesian network. This method uses the directed bipartite graph to represent the causal relationship between Intrusion and event alarm, and then gains the probability parameter of the Bayesian network by learning from the train set. At last, it uses the maximum possible explanation to reason the transformed reasoning problem. For the efficiency of detection, we limit the number of invasion occurred at the same time below a special number. Experiments show that our method has a high detection rate and very good robustness.
作者 何一青
出处 《信息网络安全》 2012年第8期108-111,共4页 Netinfo Security
关键词 入侵检测 二分图 贝叶斯网络 intrusion detection bipartite graph bayesian network
  • 相关文献

参考文献8

  • 1Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (Second edition) [C]. Pearson Education, Prentice Hall, 1995.
  • 2Sandeep Kumar, Eugene Spafford. An application of pattern matching in intrusion detection[C]. CSD-TP,-94-013, Department of Computer Science, Purdue University, 1994.66-75.
  • 3马壮,杨善林,胡小建.贝叶斯网结构学习的研究现状及发展趋势[J].合肥工业大学学报(自然科学版),2005,28(8):833-838. 被引量:7
  • 4冀俊忠,刘椿年,沙志强.贝叶斯网模型的学习、推理和应用[J].计算机工程与应用,2003,39(5):24-27. 被引量:36
  • 5The UCI KDD Archive. KDD Cup 1999 Data[EB/OL]. http://kdd. ics.uci.edu/ databases/kddcup99 / k ddcup99.html, 2012-07-12.
  • 6PNL[EB/OL]. http://sourceforge.net/projects/openpnl/, 2012-07-12.
  • 7Harles Elkan. Results of the KDD'99 Classifier Learning Contest[EB/ OL]. http://www-cse.ucsd.edu/users/elkan/clresults.html, 2012-07-12.
  • 8Maheshkumar Sabhnani, Gursel Serpen. Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context[C]. Proceedings of International Cont~erence on Machine Learning: Models, Technologies, and Applications (MLMTA 2003), 2003. 209-215.

二级参考文献3

共引文献41

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部